
devilbox Documentation

cytopia

Jan 25, 2019

About

1 Read first 3
1.1 Shell commands . 3
1.2 Checklists . 3
1.3 Where to start? . 4

2 Features 5
2.1 Projects . 6
2.2 Service and version choice . 7
2.3 Configuration . 7
2.4 Intranet . 7
2.5 Dockerized . 8
2.6 Others . 8

3 Install the Devilbox 9
3.1 Supported OS . 9
3.2 Requirements . 10
3.3 Download the devilbox . 10
3.4 Create .env file . 11
3.5 Adjust .env file . 11
3.6 Checklist . 12

4 Update the Devilbox 13
4.1 Update git repository . 14
4.2 Update Docker images . 15
4.3 Checklist git repository . 16
4.4 Checklist Docker images . 16

5 Start the Devilbox 17
5.1 Start all container . 17
5.2 Start some container . 18
5.3 Open Devilbox intranet . 18
5.4 Checklist . 19

6 Directory overview 21
6.1 Data directory . 21
6.2 Project directory . 22
6.3 Docroot directory . 22

i

6.4 Domain suffix . 22
6.5 Making sense of it . 22
6.6 Checklist . 23

7 Create your first project 25
7.1 Step 1: visit Intranet vhost page . 26
7.2 Step 2: create a project directory . 26
7.3 Step 3: create a docroot directory . 27
7.4 Step 4: create a DNS entry . 28
7.5 Step 5: Visit your project . 29
7.6 Step 6: Create a hello world . 30
7.7 Checklist . 31

8 Read log files 33
8.1 Mounted logs . 33
8.2 Docker logs . 34
8.3 Checklist . 34

9 Email catch-all 35

10 Enter the PHP container 37
10.1 How to enter . 37
10.2 How to become root . 38
10.3 Tools . 38
10.4 Advanced . 39
10.5 Checklist . 39

11 The Intranet 41
11.1 Devilbox tools . 42
11.2 Third-party tools . 48
11.3 Settings . 49
11.4 Checklist . 49

12 Best practice 51
12.1 Move data out of Devilbox directory . 51
12.2 PHP project hostname settings . 54
12.3 Timezone . 55

13 Backup and restore MySQL 57
13.1 Backup . 58
13.2 Restore . 61

14 Backup and restore PostgreSQL 63
14.1 Backup . 63
14.2 Restore . 64

15 Backup and restore MongoDB 67
15.1 Backup . 67
15.2 Restore . 68

16 Communicating with external hosts 69
16.1 Prerequisites . 70
16.2 Make DNS available to the Devilbox . 71
16.3 Further reading . 72

ii

17 Add your own Docker image 73
17.1 Prerequisites . 73
17.2 What information do you need? . 74
17.3 How to add a new service? . 74
17.4 How to start the new service? . 76
17.5 Further reading . 76

18 Overwrite existing Docker image 77
18.1 Prerequisites . 77
18.2 What information do you need? . 77
18.3 How to overwrite a service? . 78
18.4 Further reading . 79

19 Adding Sub domains 81
19.1 Single sub domain for one project . 82
19.2 Multiple sub domains for one project . 82

20 Change container versions 91
20.1 Change PHP version . 91
20.2 Change whatever version . 93
20.3 Checklist . 93

21 Work inside the container 95
21.1 Enter the container . 96
21.2 Inside the container . 96
21.3 Leave the container . 97
21.4 Host to Container mappings . 97
21.5 Checklist . 99

22 Enable Xdebug 101
22.1 Enable Xdebug . 102
22.2 Configure your IDE . 105

23 Custom environment variables 113
23.1 Add custom environment variables . 113
23.2 Use custom environment variables . 114

24 Static Code Analysis 115
24.1 Awesome-ci . 115
24.2 PHPCS . 116
24.3 ESLint . 117

25 Setup CakePHP 119
25.1 Overview . 119
25.2 Walk through . 120

26 Setup Drupal 123
26.1 Overview . 123
26.2 Walk through . 124

27 Setup Joomla 127
27.1 Overview . 127
27.2 Walk through . 128

28 Setup Laravel 131
28.1 Overview . 131

iii

28.2 Walk through . 132

29 Setup Phalcon 135
29.1 Overview . 135
29.2 Walk through . 136

30 Setup Symfony 139
30.1 Overview . 139
30.2 Walk through . 140

31 Setup Wordpress 143
31.1 Overview . 143
31.2 Walk through . 144

32 Setup Yii 147
32.1 Overview . 147
32.2 Walk through . 148

33 Setup Zend 151
33.1 Overview . 151
33.2 Walk through . 152

34 DNS records 155
34.1 Examples . 156
34.2 Creating DNS records . 156
34.3 Verify . 158

35 Customized virtual host (vhost-gen) 159
35.1 vhost-gen . 160
35.2 Templates explained . 162
35.3 Apply Changes . 165
35.4 Further readings . 166

36 HTTPS (SSL) 167
36.1 TL;DR . 167
36.2 How does it work . 168
36.3 Import the CA into your browser . 168
36.4 Further Reading . 175

37 Web server 177
37.1 Features . 178
37.2 Information . 178
37.3 Configuration . 178

38 PHP 179

39 MySQL 181

40 MongoDB 183

41 Redis 185

42 Memcached 187

43 BIND 189

44 Devilbox Intranet 191

iv

45 Auto-DNS 193
45.1 Native Docker . 193
45.2 Docker Toolbox . 196

46 .env file 199
46.1 Core settings . 201
46.2 Intranet settings . 206
46.3 Docker image versions . 208
46.4 Docker host mounts . 212
46.5 Docker host ports . 215
46.6 Container settings . 217

47 docker-compose.yml 225

48 docker-compose.override.yml 227
48.1 Create docker-compose.override.yml . 227
48.2 Further reading . 228

49 apache.conf 229
49.1 General . 229
49.2 Examples . 230

50 nginx.conf 233
50.1 General . 233
50.2 Examples . 234

51 php.ini 237
51.1 General . 237
51.2 Examples . 238

52 php-fpm.conf 239
52.1 General . 239
52.2 Examples . 240

53 my.cnf 243
53.1 General . 243
53.2 Examples . 244

54 bashrc.sh 247
54.1 Directory mapping . 247
54.2 Examples . 248

55 Docker and Docker Compose 251
55.1 Install Docker . 251
55.2 Install Docker Compose . 252
55.3 Checklist . 252

56 Docker Toolbox 253
56.1 Installation . 253
56.2 Additional steps . 254
56.3 Checklist . 254

57 Available container 257

58 Available tools 259

v

59 Remove stopped container 261
59.1 Why should I? . 261
59.2 How to do it? . 261
59.3 When to do it? . 261

60 Syncronize container permissions 263
60.1 Unsyncronized permissions . 263
60.2 It gets even worse . 264
60.3 The solution . 264

61 FAQ 265
61.1 General . 266
61.2 Configuration . 267
61.3 Compatibility . 268

62 Troubleshooting 271
62.1 Invalid bind mount spec . 271
62.2 [Warning] World-writable config file ‘/etc/mysql/docker-default.d/my.cnf’ is ignored 272

63 Blogs, Videos and Use-cases 273
63.1 Official videos . 273
63.2 Blog posts . 273
63.3 Use-cases . 274
63.4 Add your story . 274

64 Artwork 275

vi

devilbox Documentation

The Devilbox is a modern dockerized LAMP and MEAN stack for local development on Linux, MacOS and Windows.

It allows you to have an unlimited number of projects ready without having to install any external software and without
having to configure any virtual hosts. As well as providing a very flexible development stack that you can run offline.
(Internet is only required to initially pull docker container).

The only thing you will have to do is to create a new directory on the filesystem and your virtual host is ready to be
served with your custom domain.

Important:

Read first Ensure you have read this document to understand how this documentation works.

About 1

devilbox Documentation

2 About

CHAPTER 1

Read first

Find some useful information and tips for the documentation itself.

1.1 Shell commands

Important: All shell commands in this documentation use two different formats:

1. This one indicates that the command should be executed on your host operating system. (When copying com-
mands, do not copy the host> part).

host> command

2. This one indicates that the command should be executed inside the currently selected PHP container. (When
copying commands, do not copy the php> part).

php> command

1.2 Checklists

Note: Most guids and tutorials provide a Checklist at the very bottom. You can as well jump to it and quickly see if
you have done everything already.

3

devilbox Documentation

1.3 Where to start?

On the left menu you will find a GETTING STARTED section, read through all of them to get a basic theoretical
and practical understanding about the Devilbox.

There is also a Blogs, Videos and Use-cases section that might be useful as an additional crash-course.

4 Chapter 1. Read first

CHAPTER 2

Features

This section gives you a brief overview about the available features.

Table of Contents

• Projects

– Unlimited projects

– Automated virtual hosts

– Automated DNS records

– Email catch-all

– Log files

– Virtual host domains

• Service and version choice

– Selective start

– Version choice

– LAMP and MEAN stack

• Configuration

– Global configuration

– Version specific configuration

– Project specific configuration

• Intranet

– Command & Control Center

– Third-party tools

5

devilbox Documentation

• Dockerized

– Portable

– Built nightly

– Ships popular development tools

– Work inside the container

– Work inside and outside the container interchangeably

• Others

– Work offline

– Hacking

2.1 Projects

2.1.1 Unlimited projects

The number of projects you can add are so to speak unlimited. Simply add new project directories and they become
automatically available in no time.

2.1.2 Automated virtual hosts

Creating a new project is literally done by creating a new directory on the file system. Everything else is automatically
taken care of in the background. Virtual hosts are added instantly without having to restart any services.

2.1.3 Automated DNS records

The built-in DNS server will automatically make any DNS record available to your host system by using a wild-card
DNS record.

2.1.4 Email catch-all

All outgoing emails originating from your projects are intercepted, stored locally and can be viewed within the bundled
intranet. This removes the need to create developer DNS records in /etc/hosts.

2.1.5 Log files

Log files for every service are available. Either in the form of Docker logs or as actual log files mounted into the
Devilbox git directory. The web and PHP server offer log files for each project separetely.

2.1.6 Virtual host domains

Each of your virtual host will have its own domain. TLD can be freely chosen, such as *.loc, *.local, *.com,
*.org or whatever you require.

6 Chapter 2. Features

devilbox Documentation

2.2 Service and version choice

2.2.1 Selective start

Run only the Docker container you actually need, but be able to reload others on the fly once they are needed. So you
could first startup PHP and MySQL only and in case you would require a Redis server you can attach it later to the
Devilbox stack without having to restart anything.

2.2.2 Version choice

Each provided service (such as PHP, MySQL, PostgreSQL, etc) comes in many different versions. You can enable any
combination that matches your perfect development stack.

2.2.3 LAMP and MEAN stack

Run a full LAMP stack with Apache or Nginx and even attach MEAN stack services such as MongoDB.

2.3 Configuration

2.3.1 Global configuration

All services can be configured globally by including your very own customized php.ini, php-fpm.conf, my.
cnf, nginx.conf. apache.conf and other configuration files.

2.3.2 Version specific configuration

Each version of PHP can have its own php.ini and php-fpm.conf files, each version of MySQL, MariaDB or
PerconaDB can have its own my.cnf files, each Apache. . . , each Nginx. . . you get the idea.

2.3.3 Project specific configuration

Even down to projects, the Devilbox allows for full customization when it comes to virtual host settings via vhost-gen.

2.4 Intranet

2.4.1 Command & Control Center

The intranet is your Command & Control Center showing you all applied settings, mount points, port exposures,
hostnames and any errors including how they can be resolved.

2.4.2 Third-party tools

Mandatory web projects are also shipped: phpMyAdmin, Adminer and OpcacheGui as well as a web GUI to view all
sent emails.

2.2. Service and version choice 7

https://github.com/devilbox/vhost-gen
https://www.phpmyadmin.net
https://www.adminer.org
https://github.com/amnuts/opcache-gui

devilbox Documentation

2.5 Dockerized

2.5.1 Portable

Docker container run on Linux, Windows and MacOS, so does the Devilbox. This ensures that no matter what
operating system you are currently on, you can always run your development stack.

2.5.2 Built nightly

Docker images (at least official Devilbox Docker images) are built nightly and pushed to Dockerhub to ensure to
always have the latest versions installed and be up-to-date with any security patches that are available.

2.5.3 Ships popular development tools

The Devilbox is also designed to be a development environment offering many tools used for everyday web develop-
ment, no matter if frontend or backend.

2.5.4 Work inside the container

Instead of working on you host operating system, you can do everything inside the container. This allows you to have
all tools pre-installed and a working unix environment ready.

2.5.5 Work inside and outside the container interchangeably

No matter if you work on your host operating system or inside the Docker container. Special mount points and
port-forwards are already in place to make both look the same to you.

2.6 Others

2.6.1 Work offline

The Devilbox only requires internet initially to pull the required Docker images, once this is done you can work
completely offline. No need for an active internet connection.

2.6.2 Hacking

Last but not least, the Devilbox is bascially just a docker-compose.yml file and you can easily add any Docker
images you are currently missing in the Devilbox setup.

8 Chapter 2. Features

CHAPTER 3

Install the Devilbox

Important:

Read first Ensure you have read this document to understand how this documentation works.

Table of Contents

• Supported OS

• Requirements

• Download the devilbox

– Checkout a different release

• Create .env file

• Adjust .env file

– Find your user id

– Find your group id

• Checklist

3.1 Supported OS

The devilbox runs on all operating systems that provide Docker and Docker Compose.

9

devilbox Documentation

3.2 Requirements

The only requirements for the devilbox is to have Docker and Docker Compose installed, everything else is
bundled and provided withing the Docker container. The minimum required versions are listed below:

• Docker: 1.12.0+

• Docker Compose: 1.9.0+

Additionally you will require git in order to clone the devilbox project.

Warning:

Docker Toolbox Use native Docker and do not use the Docker Toolbox. If you still have to use the Docker
Toolbox (e.g. for Windows 7 or older Macs) read up on this section.

Warning: Docker itself requires super user privileges which is granted to a system wide group called docker.
After having installed Docker on your system, ensure that your local user is assigned to the docker group. Check
this via groups or id command.

See also:

Install Docker Have a look at this page to help you install Docker for your operating system.

Install Docker Compose Have a look at this page to help you install Docker Compose for your operating system.

3.3 Download the devilbox

The devilbox does not need to be installed. The only thing that is required is its git directory. To download that, open
a terminal and copy/paste the following command.

host> git clone https://github.com/cytopia/devilbox

3.3.1 Checkout a different release

You now have the devilbox downloaded at the latest version (git master branch). This is also recommended as
it receives bugfixes frequently. If you however want to stay on a stable release, you need to check out s specific git
tag.

Lets say you want your devilbox setup to be at release 0.12.1, all you have to do is to check out this specific git tag.

10 Chapter 3. Install the Devilbox

devilbox Documentation

host> cd path/to/devilbox
host> git checkout 0.12.1

Warning: Whenever you check out a different version, make sure that your .env file is up-to-date with the
bundled env-example file. Different Devilbox releases might require different settings to be available inside
the .env file. Refer to the next section for how to create the .env file.

3.4 Create .env file

Inside the cloned devilbox git directory, you will find a file called env-example. This file acts as a template with
sane defaults for Docker Compose. In order to use it, it must be copied to a file named .env. (Note the leading
dot).

host> cp env-example .env

The .env file does nothing else then providing environment variables for Docker Compose and in this case it is
used as the main configuration file for the devilbox by providing all kinds of settings (such as which version to start
up).

See also:

Docker Compose env file Official Docker documentation about the .env file

.env file All available Devilbox .env values and their description

3.5 Adjust .env file

To get you started, there are only two variables that need to be adjusted:

• NEW_UID

• NEW_GID

The values for those two variables refer to your local (on your host operating system) user id and group id. To find out
what the values are required in your case, issue the following commands on a terminal:

3.5.1 Find your user id

host> id -u

3.5.2 Find your group id

host> id -g

In most cases both values will be 1000, but for the sake of this example, let’s assume a value of 1001 for the user id
and 1002 for the group id.

Open the .env file with your favorite text editor and adjust those values:

3.4. Create .env file 11

https://docs.docker.com/compose/env-file/

devilbox Documentation

Listing 1: .env

host> vi .env

NEW_UID=1001
NEW_GID=1002

Warning: Make sure that you use the values provided by id -u and id -g.

See also:

Syncronize container permissions Read up more on the general problem of trying to have syncronized permissions
between the host system and a running Docker container.

3.6 Checklist

1. Docker and Docker Compose are installed at minimum required version

2. Your user is part of the docker group

3. Devilbox is cloned

4. .env file is created

5. User and group id have been set in .env file

That’s it, you have finished the first section and have a working Devilbox ready to be started.

12 Chapter 3. Install the Devilbox

CHAPTER 4

Update the Devilbox

If you are in the initial install process, you can safely skip this section and come back once you actually want to update
the Devilbox.

Table of Contents

• Update git repository

– Stop container

– Case 1: Update master branch

– Case 2: Checkout release tag

– Keep .env file in sync

– Recreate container

• Update Docker images

– Update one Docker image

– Update all currently set Docker images

– Update all available Docker images for all versions

• Checklist git repository

• Checklist Docker images

13

devilbox Documentation

4.1 Update git repository

4.1.1 Stop container

Before updating your git branch or checking out a different tag or commit, make sure to properly stop all devilbox
containers:

Stop containers
host> cd path/to/devilbox
host> docker-compose stop

Ensure containers are stopped
host> docker-compose ps

4.1.2 Case 1: Update master branch

If you simply want to update the master branch, do a git pull origin master:

Update master branch
host> cd path/to/devilbox
host> git pull origin master

4.1.3 Case 2: Checkout release tag

If you want to checkout a specific release tag (such as 0.12.1), do a git checkout 0.12.1:

Checkout release
host> cd path/to/devilbox
host> git checkout 0.12.1

4.1.4 Keep .env file in sync

Warning: Whenever you check out a different version, make sure that your .env file is up-to-date with the
bundled env-example file. Different Devilbox releases might require different settings to be available inside
the .env file.

You can also compare your current .env file with the provided env-example file by using your favorite diff editor:

host> vimdiff .env env-example

host> diff .env env-example

host> meld .env env-example

4.1.5 Recreate container

Whenever the path of a volume changes (either due to upstream changes in git or due to you changing it manually in
the .env file) you need to remove the stopped container and have them fully recreated during the next start.

14 Chapter 4. Update the Devilbox

devilbox Documentation

Remove anonymous volumes
host> cd path/to/devilbox
host> docker-compose rm

See also:

Remove stopped container

4.2 Update Docker images

Updating the git branch shouldn’t be needed to often, most changes are actually shipped via newer Docker images,
so you should frequently update those.

This is usually achieved by issueing a docker pull command with the correct image name and image version or
docker-compose pull for all currently selected images in .env file. For your convenience there is a shell script
in the Devilbox git directory: update-docker.sh which will update all available Docker images at once for every
version.

Note: The Devilbox own Docker images (Apache, Nginx, PHP and MySQL) are even built every night to ensure
latest security patches and tool versions are applied.

4.2.1 Update one Docker image

Updating or pulling a single Docker image is accomplished by docker pull <image>:<tag>. This is not very
handy as it is quite troublesome to do it separately per Docker image.

You first need to find out the image name and then also the currently used image tag.

host> grep 'image:' docker-compose.yml

image: cytopia/bind:0.11
image: devilbox/php-fpm:${PHP_SERVER:-7.0}-work
image: devilbox/${HTTPD_SERVER:-nginx-stable}:0.13
image: cytopia/${MYSQL_SERVER:-mariadb-10.1}:latest
image: postgres:${PGSQL_SERVER:-9.6}
image: redis:${REDIS_SERVER:-3.2}
image: memcached:${MEMCD_SERVER:-latest}
image: mongo:${MONGO_SERVER:-latest}

After having found the possible candidates, you will still have to find the corresponding value inside the ..env file.
Let’s do it for the PHP image:

host> grep '^PHP_SERVER' .env

PHP_SERVER=5.6

So now you can substitute the ${PHP_SERVER} variable from the first command with 5.6 and finally pull a newer
version:

host> docker pull devilbox/php-fpm:5.6-work

Not very efficient.

4.2. Update Docker images 15

devilbox Documentation

4.2.2 Update all currently set Docker images

This approach is using docker-compose pull to update all images, but only for the versions that are actually set
in .env.

host> docker-compose pull

Pulling bind (cytopia/bind:0.11)...
Pulling php (devilbox/php-fpm:5.6-work)...
Pulling httpd (devilbox/apache-2.2:0.13)...
Pulling mysql (cytopia/mysql-5.7:latest)...
Pulling pgsql (postgres:9.6)...
Pulling redis (redis:4.0)...
Pulling memcd (memcached:1.5.2)...
Pulling mongo (mongo:3.0)...

This is most likely the variant you want.

4.2.3 Update all available Docker images for all versions

In case you also want to pull/update every single of every available Devilbox image, you can use the provided shell
script, which has all versions hardcoded and pulls them for you:

host> ./update-docker.sh

4.3 Checklist git repository

1. Ensure containers are stopped and removed/recreated (docker-compose stop && docker-compose
rm)

2. Ensure desired branch, tag or commit is checked out or latest changes are pulled

3. Ensure .env file is in sync with env-example file

4.4 Checklist Docker images

1. Ensure docker-compose pull or ./update-docker.sh is executed

16 Chapter 4. Update the Devilbox

CHAPTER 5

Start the Devilbox

Congratulations, when you have reached this page everything has been set up and you can now get your hands dirty.

Note: Starting and stopping containers is done via docker-compose. If you have never worked with it before,
have a look at their documentation for an overview, up and stop commands.

Table of Contents

• Start all container

• Start some container

• Open Devilbox intranet

• Checklist

5.1 Start all container

If you want all provided services to be available (as defined in docker-compose.yml), just start them all via:

host> docker-compose up

• If you want to gracefully stop all container, hit Ctrl + c

• If you want to kill all container, hit Ctrl + c twice

17

https://docs.docker.com/compose/reference/overview/
https://docs.docker.com/compose/reference/up/
https://docs.docker.com/compose/reference/stop/

devilbox Documentation

5.2 Start some container

If you don’t require all services to be up and running and let’s say just PHP, HTTPD and MYSQL, enter the following
command:

host> docker-compose up httpd php mysql

• If you want to gracefully stop all started container, hit Ctrl + c

• If you want to kill all started container, hit Ctrl + c twice

See also:

Available container Have a look at this page to get an overview about all available container and by what name they
have to be specified.

5.3 Open Devilbox intranet

Once docker-compose up has finished and all or the selected container are up and running, you can visit the
Devilbox intranet with your favorite Web browser at http://localhost or http://127.0.0.1.

The Intranet start page will also show you all running and failed containers:

Warning:

Docker Toolbox When you are using Docker Toolbox the Devilbox Web server port will not be available on
your host computer. You have to forward the virtual machines port to your host computer. Read more about
it on this guide.

18 Chapter 5. Start the Devilbox

http://localhost
http://127.0.0.1

devilbox Documentation

5.4 Checklist

1. Docker container are started successfully with docker-compose up

2. Intranet is reachable via http://localhost or http://127.0.0.1

5.4. Checklist 19

devilbox Documentation

20 Chapter 5. Start the Devilbox

CHAPTER 6

Directory overview

Important: The directory overview only provides you some theoretical, but useful insights about how it all works
together. You should at least read it once to be able to debug any problems you might encounter.

If you have read it already, jump directly to Create your first project

Table of Contents

• Data directory

• Project directory

• Docroot directory

• Domain suffix

• Making sense of it

• Checklist

6.1 Data directory

By default all your projects must be created in the ./data/www/ directory which is inside in your Devilbox git
directory. This can be changed as well, but is outside the scope of this getting started tutorial.

You can verifiy that the path is actually ./data/www/ by checking your .env file:

host> grep HTTPD_DATADIR .env

HOST_PATH_HTTPD_DATADIR=./data/www

21

devilbox Documentation

6.2 Project directory

The project directory is a directory directly within the data directory.

This represents one project.

By creating this directory, the web server will create a new virtual host for you. This happens fully automated and
there is nothing else required to do except just to create a directory.

The name of this directory will also be used to build up the final project url together with the domain suffix: http:/
/<project directory>.<domain suffix>

Create as many project directories as you require.

6.3 Docroot directory

The docroot directory is a directory within each project directory from which the webserver will serve the files.

By default this directory must be named htdocs. This can be changed as well, but is outside the scope of this getting
started tutorial.

You can verifiy that the docroot directory is actually htdocs by checking your .env file:

host> grep DOCROOT_DIR .env

HTTPD_DOCROOT_DIR=htdocs

6.4 Domain suffix

The default domain suffix (TLD_SUFFIX variable in .env file) is loc. That means that all your projects will be
available under the following address: http://<project-directory>.loc. This can be changed as well, but
is outside the scope of this getting started tutorial.

You can verifiy that the suffix is actually loc by checking your .env file:

host> grep ^TLD_SUFFIX .env

TLD_SUFFIX=loc

6.5 Making sense of it

Ok, let’s sum it up and make sense of the previously provided information. To better illustrate the behaviour we are
going to use project-1 as our project directory name.

22 Chapter 6. Directory overview

devilbox Documentation

Item Example Description
data dir ./data/www Where all of your projects reside.
project dir ./data/www/project-1 A single project. It’s name will be used to create the

url.
docroot dir ./data/www/project-1/

htdocs
Where the webserver looks for files within your project.

domain suf-
fix

loc Suffix to build up your project url.

project url http://project-1.loc Final resulting project url.

data dir

This directory is mounted into the httpd and php container, so that both know where all projects can be found. This
is also the place where you create project directories for each of your projects.

project dir

Is your project and used to generate the virtual host together with the domain suffix.

docroot dir

A directory inside your project dir from where the webserver will actually serve your files.

domain suffix

Used as part of the project url.

6.6 Checklist

1. You know what the data directory is

2. You know what the project directory is

3. You know what the docroot directory is

4. You know what the domain suffix is

5. You know how domains are constructed

6.6. Checklist 23

devilbox Documentation

24 Chapter 6. Directory overview

CHAPTER 7

Create your first project

Important: Ensure you have read Directory overview to understand what is going on under the hood.

Note: This section not only applies for one project, it applied for as many projects as you need. There is no limit in
the number of projects.

Table of Contents

• Step 1: visit Intranet vhost page

• Step 2: create a project directory

• Step 3: create a docroot directory

• Step 4: create a DNS entry

– Add DNS for Linux and MacOS (native Docker)

– Add DNS for Windows (native Docker)

– Add DNS for Docker Toolbox

– Back to intranet

• Step 5: Visit your project

• Step 6: Create a hello world

• Checklist

25

devilbox Documentation

7.1 Step 1: visit Intranet vhost page

Before starting, have a look at the vhost page at http://localhost/vhosts.php

It should look like the screenshot below and will actually already provide the information needed to create a new
project.

7.2 Step 2: create a project directory

In your Devilbox git directory, navigate to ./data/www and create a new directory.

Note: Choose the directory name wisely, as it will be part of the domain for that project. For this example we will
use project-1 as our project name.

navigate to your Devilbox git directory
host> cd path/to devilbox

navigate to the data directory
host> cd data/www

create a new project directory named: project-1
host> mkdir project-1

Visit the vhost page again and see what has changed: http://localhost/vhosts.php

26 Chapter 7. Create your first project

http://localhost/vhosts.php
http://localhost/vhosts.php

devilbox Documentation

So what has happened?

By having created a project directory, the web server container has created a new virtual host. However it has noticed,
that the actual document root directory does not yet exist and therefore it cannot serve any files yet.

7.3 Step 3: create a docroot directory

Note: As desribed in Docroot directory the docroot directory name must be htdocs for now.

Navigate to your newly created project directory and create a directory named htdocs inside it.

navigate to your Devilbox git directory
host> cd path/to devilbox

navigate to your above created project directory
host> cd data/www/project-1

create the docroot directory
host> mkdir htdocs

Vist the vhost page again and see what has changed: http://localhost/vhosts.php

7.3. Step 3: create a docroot directory 27

http://localhost/vhosts.php

devilbox Documentation

So what has happened?

By having created the docroot directory, the web server is now able to serve your files. However it has noticed, that
you have no way yet, to actually visit your project url, as no DNS record for it exists yet.

The intranet already gives you the exact string that you can simply copy into your /etc/hosts file on your host
operating system to solve this issue.

Important: This will only work on native Docker for Linux or MacOS. Read up on the next section to also find out
how to do that on Docker Toolbox and Windows.

7.4 Step 4: create a DNS entry

Note: This step can also be automated via the bundled DNS server to automatically provide catch-all DNS entries to
your host computer, but is outside the scope of this getting started tutorial.

7.4.1 Add DNS for Linux and MacOS (native Docker)

On Linux and MacOS (when using the native Docker), this step is fairly simple. The intranet provides you the exact
string you need to paste into your /etc/hosts file on your host operating system.

Open your /etc/hosts file with sudo or root privileges
and add the following DNS entry
host> sudo vi /etc/hosts

127.0.0.1 project-1.loc

7.4.2 Add DNS for Windows (native Docker)

On Windows (when using the native Docker), you can also copy paste the command provided by the intranet, however
the destination file is different. You have to add this string into: C:\Windows\System32\drivers\etc.

Open C:\Windows\System32\drivers\etc with admistrative privileges and add the following entry

127.0.0.1 project-1.loc

7.4.3 Add DNS for Docker Toolbox

When using Docker Toolbox the Devilbox runs inside a virtual machine and therefore the Webserver port (80) is
not exposed to your host operating system. So your DNS record must point to the virtual machine instead of your host
system.

1. Find out the IP address the virtual machine is running on

2. Add a DNS entry to your host operating system for this IP address.

For the sake of this example, let’s assume the virtual machine is running on 192.16.0.1, then the DNS record you
will have to add instead on your host operating system is:

Docker Toolbox on MacOS

28 Chapter 7. Create your first project

devilbox Documentation

host> sudo vi /etc/hosts

192.16.0.1 project-1.loc

Docker Toolbox on Windows

Open C:\Windows\System32\drivers\etc with admistrative privileges and add the following entry

192.16.0.1 project-1.loc

7.4.4 Back to intranet

Vist the vhost page again and see what has changed: http://localhost/vhosts.php

So what has happened?

By having created the DNS record, the Devilbox intranet is aware that everything is setup now and gives you a link to
your new project.

7.5 Step 5: Visit your project

On the intranet, click on your project link. This will open your project in a new Browser tab or visit http://project-1.loc

7.5. Step 5: Visit your project 29

http://localhost/vhosts.php
http://project-1.loc

devilbox Documentation

So what has happened?

Everything is setup now, however the webserver is trying to find a index.php file in your document root which does
not yet exist.

So all is left for you to do is to add your HTML or PHP files.

7.6 Step 6: Create a hello world

Navigate to your docroot directory within your project and create a index.php file with some output.

navigate to your Devilbox git directory
host> cd path/to devilbox

navigate to your projects docroot directory
host> cd data/www/project-1/htdocs

Create a hello world index.php file
host> echo "<?php echo 'hello world';" > index.php

Alternatively create an index.php file in data/www/project-1/htdocs with the following contents:

<?php echo 'hello world';

Visit your project url again and see what has changed: http://project-1.loc

30 Chapter 7. Create your first project

http://project-1.loc

devilbox Documentation

7.7 Checklist

1. Project directory is created

2. Docroot directory is created

3. DNS entry is added to the host operating system

4. PHP files are added to your docroot directory

7.7. Checklist 31

devilbox Documentation

32 Chapter 7. Create your first project

CHAPTER 8

Read log files

The logging behaviour is determined by the value of DOCKER_LOGS inside your .env file. By default logs are
mounted to the host operating system for convenient access.

Table of Contents

• Mounted logs

• Docker logs

• Checklist

8.1 Mounted logs

By default log files for PHP, the webserver and the MySQL server are mounted to the host system into your Dev-
ilbox git directory under ./log/. All logs are separated by service version in the following format: ./log/
<service>-<version>/

The log directory structure would look something like this:

host> cd path/to/devilbox
host> tree log

log/
nginx-stable/

nginx-stable/
defaultlocalhost-access.log
defaultlocalhost-error.log
<project-name>-access.log # Each project has its own access log
<project-name>-error.log # Each project has its own error log

mariadb-10.1/
error.log

(continues on next page)

33

devilbox Documentation

(continued from previous page)

query.log
slow.log

php-fpm-7.1/
php-fpm.access
php-fpm.error

Use your favorite tools to view log files such as tail, less, more, cat or others.

Important: Currently logs are only mounted for PHP, HTTPD and MYSQL container. All other services will log to
Docker logs.

8.2 Docker logs

You can also change the behaviour where logs are streamed by setting DOCKER_LOGS to 1 inside your .env file.
When doing logs are sent to Docker logs.

When using this approach, you need to use the docker-compose logs command to view your log files from
within the Devilbox git directory.

host> cd path/to/devilbox
host> docker-compose logs

When you want to continuously watch the log output (such as tail -f), you need to append -f to the command.

host> cd path/to/devilbox
host> docker-compose logs -f

When you only want to have logs displayed for a single service, you can also append the service name (works with or
without -f as well):

host> cd path/to/devilbox
host> docker-compose logs php -f

Important: This currently does not work for the MySQL container, which will always log to file.

8.3 Checklist

1. You know how to switch between file and Docker logs

2. You know where log files are mounted

3. You know how to access Docker logs

34 Chapter 8. Read log files

CHAPTER 9

Email catch-all

All your projects can send emails to whatever recipient. You do not have to worry that they will actually being sent.
Each PHP container runs a local postfix mailserver that intercepts all outgoing mails and puts them into a local mailbox
by the user devilbox.

In order to view sent emails open up the devilbox intranet http://localhost/mail.php. There you can also test email
sending and verify that they really stay locally.

35

http://localhost/mail.php

devilbox Documentation

In the above image from the intranet you can see that all emails sent to whatever recipient have been caught by the
Devilbox and are available to be read.

36 Chapter 9. Email catch-all

CHAPTER 10

Enter the PHP container

Another core feature of the Devilbox is, to be totally independent of what you have or have not installed on your host
operating system.

The Devilbox already ships with many common developer tools which are installed inside each PHP container, so why
not make use of it.

The only thing you might need to install on your host operating system is your favourite IDE or editor to actually start
coding.

See also:

If you want to find out what tools are available inside the PHP container, visit the following section: Available tools.

Table of Contents

• How to enter

– Linux and MacOS

– Windows

• How to become root

• Tools

– What is available

– How to update them

• Advanced

• Checklist

10.1 How to enter

37

devilbox Documentation

Note: You can only enter the PHP container if it is running.

10.1.1 Linux and MacOS

On Linux and MacOS you can simply execute the provided shell script: shell.sh. By doing so it will enter you
into the PHP container and bring you to /shared/httpd.

Execute on the host operating system
host> ./shell.sh

Now you are inside the PHP Linux container
devilbox@php-7.0.19 in /shared/httpd $

10.1.2 Windows

On Windows you have a different script to enter the PHP container: shell.bat. Just run it and it will enter you into
the PHP container and bring you to /shared/httpd.

Execute on the host operating system
C:/Users/user1/devilbox> shell.bat

Now you are inside the PHP Linux container
devilbox@php-7.0.19 in /shared/httpd $

10.2 How to become root

When you enter the container with the provided scripts, you are doing so as the user devilbox. If you do need to
perform any actions as root (such as installing new software), you can use the password-less sudo.

Inside the PHP Linux container as user devilbox
devilbox@php-7.0.19 in /shared/httpd $ sudo su -

Now you are root and can do anything you want
root@php-7.0.19 in /shared/httpd $

Note: As this action is inside a Docker container, there is no difference between Linux, MacOS or Windows. Every
host operating system is using the same Docker container - equal accross all platforms.

10.3 Tools

10.3.1 What is available

There are lots of tools available, for a full overview see Available tools. If you think you are missing a tool, install it
yourself as root, or open up an issue on github to get it backed into the Docker image permanently.

See also:

38 Chapter 10. Enter the PHP container

devilbox Documentation

Available tools

10.3.2 How to update them

There is no need to update the tools itself. All Docker images are rebuilt every night and automatically pushed to
Docker hub to ensure versions are outdated at a maximum of 24 hours.

The only thing you have to do, is to update the Docker images itself, simply by pulling a new version.

See also:

Update Docker images

10.4 Advanced

This is just a short overview about the possibility to work inside the container. If you want to dig deeper into this topic
there is also a more advanced tutorial available:

See also:

Work inside the container

10.5 Checklist

• You know how to enter the PHP container on Linux, MacOS or Windows

• You know how to become root inside the PHP container

• You know what tools are available inside the PHP container

• You know how to update the tools by pulling new versions of the Docker images

10.4. Advanced 39

devilbox Documentation

40 Chapter 10. Enter the PHP container

CHAPTER 11

The Intranet

The intranet is your command & control center showing all kinds of information and settings currently in effect. It
also offers third-party projects to do all sorts of database manipulation.

Table of Contents

• Devilbox tools

– Overview

– Virtual hosts

– Emails

– Databases

– Info pages

• Third-party tools

– phpMyAdmin

– Adminer

– OpcacheGUI

• Settings

– Password protect the intranet

– Disable the intranet

• Checklist

41

devilbox Documentation

11.1 Devilbox tools

11.1.1 Overview

The start page is there to check if everything works as expected. It shows all desired Docker containers you wanted to
start and if they succeeded, as well as their ports, mount points and special settings applied via .env.

42 Chapter 11. The Intranet

devilbox Documentation

11.1. Devilbox tools 43

devilbox Documentation

11.1.2 Virtual hosts

The virtual host page displays all available projects and let’s you know if their configuration is correct, such as DNS
settings or document root.

11.1.3 Emails

The email page displays all emails that would have been sent, but were caught by the integrated email catch-all
functionality.

44 Chapter 11. The Intranet

devilbox Documentation

11.1.4 Databases

There are several database pages for MySQL and NoSQL databases giving you an overview about what is currently in
place, how many databases/schemas and or recors and what size they take up.

The following example shows the database page for MySQL:

11.1. Devilbox tools 45

devilbox Documentation

11.1.5 Info pages

Info pages also exist for every Docker container which show various settings which are currently applied.

The following example shows you the info page for PHP.

46 Chapter 11. The Intranet

devilbox Documentation

The following example shows you the info page for MySQL:

11.1. Devilbox tools 47

devilbox Documentation

11.2 Third-party tools

11.2.1 phpMyAdmin

phpMyAdmin is a free software tool written in PHP, intended to handle the administration of MySQL over the Web.
phpMyAdmin supports a wide range of operations on MySQL and MariaDB. Frequently used operations (managing
databases, tables, columns, relations, indexes, users, permissions, etc) can be performed via the user interface, while
you still have the ability to directly execute any SQL statement.

11.2.2 Adminer

Adminer (formerly phpMinAdmin) is a full-featured database management tool written in PHP. Conversely to php-
MyAdmin, it consist of a single file ready to deploy to the target server. Adminer is available for MySQL, MariaDB,
PostgreSQL, SQLite, MS SQL, Oracle, Firebird, SimpleDB, Elasticsearch and MongoDB.

11.2.3 OpcacheGUI

OpcacheGui is a clean and responsive interface for Zend OPcache information, showing statistics, settings and cached
files, and providing a real-time update for the information (using jQuery and React).

48 Chapter 11. The Intranet

https://www.phpmyadmin.net/
https://www.adminer.org/
https://github.com/amnuts/opcache-gui

devilbox Documentation

11.3 Settings

11.3.1 Password protect the intranet

If you share your projects over a LAN, but do not want anybody to view the Devilbox intranet, you can also password
protect it.

See also:

In order to do so, have a look at the following .env variables:

• DEVILBOX_UI_PROTECT

• DEVILBOX_UI_PASSWORD

11.3.2 Disable the intranet

If you want a more production-like setup, you can also fully disable the Devilbox intranet. This is achieved internally
by removing the default virtual host which serves the intranet. When the intranet is disabled, there is no way to access
it.

See also:

In order to do so, have a look at the following .env variable:

• DEVILBOX_UI_ENABLE

11.4 Checklist

1. You know what tools are provided by the Devilbox intranet

2. You know how to password protect the Devilbox intranet

3. You know how to disable the Devilbox intranet

11.3. Settings 49

devilbox Documentation

50 Chapter 11. The Intranet

CHAPTER 12

Best practice

If you have already read all documents in the Getting started guide, you should be ready to fully operate the Devilbox.
This section builds on top of that and gives you some best-practices as well as tips and tricks.

Table of Contents

• Move data out of Devilbox directory

– Projects

– Databases

* MySQL

* PostgreSQL

* MongoDB

– Version control .env file

– Version control service config files

• PHP project hostname settings

• Timezone

12.1 Move data out of Devilbox directory

One thing you should take into serious consideration is to move data such as your projects as well as persistent data of
databases out of the Devilbox git directory.

The Devilbox git directory should be something that can be safely deleted and re-created without having to worry
about loosing any project data. There could also be the case that you have a dedicated hard-disk to store your projects
or you have your own idea about a directory structure where you want to store your projects.

51

devilbox Documentation

12.1.1 Projects

So let’s assume all of your projects are already in place under /home/user/workspace/web/. Now you decide
to use the Devilbox, but still want to keep your projects where they are at the moment.

All you have to to is to adjust the path of HOST_PATH_HTTPD_DATADIR in the .env file.

Navigate to Devilbox git directory
host> cd path/to/devilbox

Open the .env file with your favourite editor
host> vim .env

Now Adjust the value of HOST_PATH_HTTPD_DATADIR

Listing 1: .env

HOST_PATH_HTTPD_DATADIR=/home/user/workspace/web

That’s it, whenever you start up the Devilbox /home/user/workspace/web/ will be mounted into the PHP and
the web server container into /shared/httpd/.

12.1.2 Databases

Moving your projects out of the Devilbox git directory is one step, you still need to take care about persistent data of
all available databases as well.

Let’s assume you desired location for database storage is at /home/user/workspace/db/.

MySQL

All you have to to is to adjust the path of HOST_PATH_MYSQL_DATADIR in the .env file.

Navigate to Devilbox git directory
host> cd path/to/devilbox

Open the .env file with your favourite editor
host> vim .env

Now Adjust the value of HOST_PATH_MYSQL_DATADIR

Listing 2: .env

HOST_PATH_MYSQL_DATADIR=/home/user/workspace/db/mysql

That’s it, whenever you start up the Devilbox /home/user/workspace/db/mysql/ will be mounted into the
MySQL container.

PostgreSQL

All you have to to is to adjust the path of HOST_PATH_PGSQL_DATADIR in the .env file.

52 Chapter 12. Best practice

devilbox Documentation

Navigate to Devilbox git directory
host> cd path/to/devilbox

Open the .env file with your favourite editor
host> vim .env

Now Adjust the value of HOST_PATH_PGSQL_DATADIR

Listing 3: .env

HOST_PATH_PGSQL_DATADIR=/home/user/workspace/db/pgsql

That’s it, whenever you start up the Devilbox /home/user/workspace/db/pqsql/ will be mounted into the
PostgreSQL container.

MongoDB

All you have to to is to adjust the path of HOST_PATH_MONGO_DATADIR in the .env file.

Navigate to Devilbox git directory
host> cd path/to/devilbox

Open the .env file with your favourite editor
host> vim .env

Now Adjust the value of HOST_PATH_MONGO_DATADIR

Listing 4: .env

HOST_PATH_MONGO_DATADIR=/home/user/workspace/db/mongo

That’s it, whenever you start up the Devilbox /home/user/workspace/db/mongo/ will be mounted into the
MongoDB container.

12.1.3 Version control .env file

The .env file is ignored by git, because this is your file to customize and it should be your responsibility to make sure
to backup or version controlled.

One concept you can apply here is to have a separate dotfiles git repository. This is a repository that holds all of your
configuration files such as vim, bash, zsh, xinit and many more. Those files are usually stored inside this repository and
then symlinked to the correct location. By having all configuration files in one place, you can see and track changes
easily as well as bein able to jump back to previous configurations.

In case of the Devilbox .env file, just store this file in your repository and symlink it to the Devilbox git directiry.
This way you make sure that you keep your file, even when the Devilbox git directory is deleted and you also have a
means of keeping track about changes you made.

You could also go further and have several .env files available somewhere. Each of those files holds different
configurations e.g. for different projects or customers.

• env-customer1

• env-php55

• env-project3

12.1. Move data out of Devilbox directory 53

devilbox Documentation

You would then simply symlink one of those files to the Devilbox git directory.

12.1.4 Version control service config files

Todo: This will require some changes on the Devilbox and will be implemented shortly.

• Symlink and have your own git directory

• Separate data partition, backups

12.2 PHP project hostname settings

When configuring your PHP projects to use MySQL, PostgreSQL, Redis, Mongo and other services, make sure to set
the hostname of each of those services to 127.0.0.1.

Why is that?

The PHP container port-forwards each service port to its own listen address on 127.0.0.1. The Devilbox also
exposes each of those service ports to the host operating system on 127.0.0.1.

This allows you to keep your project configuration unchanged and have the same behaviour inside the PHP container
and on your host operating system.

Important: Do not mix up localhost with 127.0.0.1. They behave differently! Use 127.0.0.1 and do not
use localhost.

As an example, if you want to access the MySQL database from within the PHP container, you do the following:

Navigate to Devilbox git directory
host> cd path/to/devilbox

Enter the PHP container
host> ./shell.sh

Enter the MySQL console
php> mysql -u root -h 127.0.0.1 -p
mysql>

The very same command applies to access the MySQL database from your host operating system:

Enter the MySQL console
host> mysql -u root -h 127.0.0.1 -p
mysql>

So no matter if you use the Devilbox or have another LAMP stack installed locally on your host operating system, you
do not have to change your configuration files if you stick to this tip.

So any of your projects php files that configure MySQL as an example should point the hostname or IP address of the
MySQL server to 127.0.0.1:

54 Chapter 12. Best practice

devilbox Documentation

<?php
// MySQL server connection in your project configuration
mysql_host = '127.0.0.1';
mysql_port = '3306';
mysql_user = 'someusername';
mysql_pass = 'somepassword';
?>

See also:

Work inside the container

12.3 Timezone

The TIMEZONE value will affect PHP, web server and MySQL container equally. It does however not affect any other
official Docker container that are used within the Devilbox. This is an issue that is currently still being worked on.

Feel free to change this to any timezone you require for PHP and MySQL, but keep in mind that timezone values for
databases can be painful, once you want to switch to a different timezone.

A good practice is to always use UTC on databases and have your front-end application calculate the correct time for
the user. This way you will be more independent of any changes.

12.3. Timezone 55

devilbox Documentation

56 Chapter 12. Best practice

CHAPTER 13

Backup and restore MySQL

Backup and restore will be necessary when you are going to switch MySQL versions. Each version has its own data
directory and is fully indepentend of other versions. In case you want to switch to a different version, but still want
to have your MySQL databases present, you must first backup the databases of your current version and import them
into the new version.

There are multiple ways to backup and restore. Chose the one which is most convenient for you.

Table of Contents

• Backup

– Mysqldump-secure

* List backups

* *.info files

– mysqldump

– phpMyAdmin

– Adminer

• Restore

– mysql

* *.sql file

* *.sql.gz file

* *.sql.tar.gz file

– phpMyAdmin

– Adminer

57

devilbox Documentation

13.1 Backup

There are many different options to backup your MySQL database including some for the command line and some
for using the Web interface. The recommended and fastest method is to use mysqldump-secure, as it will also
add info files (*.info) to each database recording checksums, dump date, dump options as well as the server version it
came from.

13.1.1 Mysqldump-secure

mysqldump-secure is bundled, setup and ready to use in every PHP container. You can run it without any arguments
and it will dump each available database as a separated compressed file. Backups will be located in ./backups/
mysql/ inside the Devilbox git directory or in /shared/backups/mysql/ inside the PHP container.

To have your backups in place is just three commands away:

Navigate to the Devilbox directory
host> cd path/to/devilbox

Enter the PHP container
host> ./shell.sh

Run mysqldump-secure
devilbox@php-7.1.6 in /shared/httpd $ mysqldump-secure

[INFO] (OPT): Logging enabled
[INFO] (OPT): MySQL SSL connection disabled
[INFO] (OPT): Compression enabled
[INFO] (OPT): Encryption disabled
[INFO] (OPT): Deletion disabled
[INFO] (OPT): Nagios log disabled
[INFO] (OPT): Info files enabled
[INFO] (SQL): 1/3 Skipping: information_schema (DB is ignored)
[INFO] (SQL): 2/3 Dumping: mysql (0.66 MB) 1 sec (0.13 MB)
[INFO] (SQL): 3/3 Skipping: performance_schema (DB is ignored)
[OK] Finished successfully

List backups

Let’s see where to find the backups inside the PHP container:

Navigate to the Devilbox directory
host> cd path/to/devilbox

Enter the PHP container
host> ./shell.sh

Show directory output
devilbox@php-7.1.6 in /shared/httpd $ ls -l /shared/backups/mysql/

-rw-r--r-- 1 devilbox 136751 Jun 17 13:31 2017-06-17_13-31__mysql.sql.gz
-rw-r--r-- 1 devilbox 2269 Jun 17 13:31 2017-06-17_13-31__mysql.sql.gz.info

Let’s do the same again and see where to find the backups in the Devilbox git directory

58 Chapter 13. Backup and restore MySQL

https://mysqldump-secure.org/

devilbox Documentation

Navigate to the Devilbox directory
host> cd path/to/devilbox

Show directory output
host> ls -l backups/mysql/

-rw-r--r-- 1 cytopia 136751 Jun 17 13:31 2017-06-17_13-31__mysql.sql.gz
-rw-r--r-- 1 cytopia 2269 Jun 17 13:31 2017-06-17_13-31__mysql.sql.gz.info

*.info files

The *.info file will hold many useful information in case you need to debug any problems occured during backups.
Let’s have a look at one of them:

host> cat ./backups/mysql/2017-06-17_13-31__mysql.sql.gz.info

Listing 1: 2017-06-17_13-31__mysql.sql.gz.info

; mysqldump-secure backup record
; Do not alter this file!
; Creation of this file can be turned off via config file.

; ==
; = Local system information
; ==
[mysqldump-secure]
version = /usr/local/bin/mysqldump-secure (0.16.3)
vdate = 2016-08-18
config = /etc/mysqldump-secure.conf

[system]
uname = Linux 4.4.0-79-generic
hostname =
user = devilbox
group = devilbox

[tools]
mysqldump = /usr/bin/mysqldump (10.14 Distrib 5.5.52-MariaDB) [for Linux (x86_64)]
mysql = /usr/bin/mysql (15.1 Distrib 5.5.52-MariaDB) [for Linux (x86_64) using
→˓readline 5.1]
compressor = /usr/bin/gzip (gzip 1.5)
encryptor = Not used

; ==
; = Database / File information
; ==
[database]
db_name = mysql
db_size = 687326 Bytes (0.66 MB)
tbl_cnt = 30

[file]
file_path = /shared/backups/mysql
file_name = 2017-06-17_13-31__mysql.sql.gz
file_size = 136751 Bytes (0.13 MB)

(continues on next page)

13.1. Backup 59

devilbox Documentation

(continued from previous page)

file_chmod = 0644
file_owner = devilbox
file_group = devilbox
file_mtime = 1497699116 (2017-06-17 13:31:56 CEST [+0200])
file_md5 = 8d1a6c38f81c691bc4b490e7024a4f72
file_sha = 11fb85282ea866dfc69d29dc02a0418bebfea30e7e566c3c588a50987aceac2f

; ==
; = Dump procedure information
; ==
[mysqldump]
encrypted = 0
compressed = 1
arguments = --opt --default-character-set=utf8 --events --triggers --routines --hex-
→˓blob --complete-insert --extended-insert --compress --lock-tables --skip-quick
duration = 1 sec

[compression]
compressor = gzip
arguments = -9 --stdout

[encryption]
encryptor =
algorithm =
pubkey =

; ==
; = Server information
; ==
[connection]
protocol = mysql via TCP/IP
secured = No SSL
arguments = --defaults-file=/etc/mysqldump-secure.cnf

[server]
hostname = 001b3750b549
port = 3306
replica = master
version = MariaDB 10.1.23-MariaDB MariaDB Server

13.1.2 mysqldump

mysqldump is bundled with each PHP container and ready to use. To backup a database named my_db_name follow
the below listed example which shows you how to do that from within the PHP container:

Navigate to the Devilbox directory
host> cd path/to/devilbox

Enter the PHP container
host> ./shell.sh

Start the backup
devilbox@php-7.1.6 in /shared/httpd $ mysqldump -h mysql -u root -p my_db_name > /
→˓shared/backups/mysql/my_db_name.sql

To find out more about the configuration and options of mysqldump, visit its project page under: https://dev.mysql.

60 Chapter 13. Backup and restore MySQL

https://dev.mysql.com/doc/refman/5.7/en/mysqldump.html
https://dev.mysql.com/doc/refman/5.7/en/mysqldump.html
https://dev.mysql.com/doc/refman/5.7/en/mysqldump.html

devilbox Documentation

com/doc/refman/5.7/en/mysqldump.html

13.1.3 phpMyAdmin

If you do not like to use the command line for backups, you can use phpMyAdmin. It comes bundled with the devilbox
intranet.

To find out more about the usage of phpMyAdmin, visit its project page under: https://www.phpmyadmin.net.

13.1.4 Adminer

If you do not like to use the command line for backups, you can use Adminer. It comes bundled with the devilbox
intranet.

To find out more about the usage of Adminer, visit its project page under: https://www.adminer.org.

13.2 Restore

13.2.1 mysql

In order to restore or import mysql databases on the command line, you need to use the mysql binary. Here are a few
examples for different file types:

*.sql file

Navigate to the Devilbox directory
host> cd path/to/devilbox

Enter the PHP container
host> ./shell.sh

Start the import
devilbox@php-7.1.6 in /shared/httpd $ mysql -h mysql -u root -p my_db_name < /shared/
→˓backups/mysql/my_db_name.sql

*.sql.gz file

Navigate to the Devilbox directory
host> cd path/to/devilbox

Enter the PHP container
host> ./shell.sh

Start the import
devilbox@php-7.1.6 in /shared/httpd $ zcat /shared/backups/mysql/my_db_name.sql.gz |
→˓mysql -h mysql -u root -p my_db_name

13.2. Restore 61

https://dev.mysql.com/doc/refman/5.7/en/mysqldump.html
https://dev.mysql.com/doc/refman/5.7/en/mysqldump.html
https://www.phpmyadmin.net
https://www.phpmyadmin.net
https://www.adminer.org
https://www.adminer.org

devilbox Documentation

*.sql.tar.gz file

Navigate to the Devilbox directory
host> cd path/to/devilbox

Enter the PHP container
host> ./shell.sh

Start the import
devilbox@php-7.1.6 in /shared/httpd $ tar xzOf /shared/backups/mysql/my_db_name.sql.
→˓tar.gz | mysql -h mysql -u root -p my_db_name

13.2.2 phpMyAdmin

phpMyAdmin supports importing many different formats out-of-the-box. Simply select the compressed or uncom-
pressed file and press Go in the import section of the web interface.

13.2.3 Adminer

Adminer supports importing of plain (*.sql) or gzipped compressed (*.sql.gz) files out-of-the-box. Simply
select the compressed or uncompressed file and press Execute in the import section of the web interface.

62 Chapter 13. Backup and restore MySQL

https://www.phpmyadmin.net
https://www.adminer.org

CHAPTER 14

Backup and restore PostgreSQL

Backup and restore will be necessary when you are going to switch PostgreSQL versions. Each version has its own
data directory and is fully indepentend of other versions. In case you want to switch to a different version, but still
want to have your PostgreSQL databases present, you must first backup the databases of your current version and
import them into the new version.

There are multiple ways to backup and restore. Chose the one which is most convenient for you.

Table of Contents

• Backup

– pg_dump

– Adminer

• Restore

– psql

* *.sql file

* *.sql.gz file

* *.sql.tar.gz file

– Adminer

14.1 Backup

14.1.1 pg_dump

pg_dump is bundled with each PHP container and reay to use. To backup a database named my_db_name follow the
below listed example:

63

https://www.postgresql.org/docs/current/static/backup-dump.html

devilbox Documentation

Navigate to the Devilbox directory
host> cd path/to/devilbox

Enter the PHP container
host> ./shell.sh

Run pg_dump
devilbox@php-7.1.6 in /shared/httpd $ pg_dump -h pgsql -U postgres -W my_db_name > /
→˓shared/backups/pgsql/my_db_name.sql

To find out more about the configuration and options of pg_dump, visit its project page under: https://www.postgresql.
org/docs/current/static/backup-dump.html.

14.1.2 Adminer

If you do not like to use the command line for backups, you can use Adminer. It comes bundled with the devilbox
intranet.

To find out more about the usage of Adminer, visit its project page under: https://www.adminer.org.

14.2 Restore

14.2.1 psql

In order to restore or import PostgreSQL databases on the command line, you need to use psql. Here are a few
examples for different file types:

*.sql file

Navigate to the Devilbox directory
host> cd path/to/devilbox

Enter the PHP container
host> ./shell.sh

Start the import
devilbox@php-7.1.6 in /shared/httpd $ psql -h pgsql -U postgres -W my_db_name < /
→˓shared/backups/pgsql/my_db_name.sql

*.sql.gz file

Navigate to the Devilbox directory
host> cd path/to/devilbox

Enter the PHP container
host> ./shell.sh

Start the import
devilbox@php-7.1.6 in /shared/httpd $ zcat /shared/backups/pgsql/my_db_name.sql.gz |
→˓psql -h pgsql -U postgres -W my_db_name

64 Chapter 14. Backup and restore PostgreSQL

https://www.postgresql.org/docs/current/static/backup-dump.html
https://www.postgresql.org/docs/current/static/backup-dump.html
https://www.adminer.org
https://www.adminer.org
https://www.postgresql.org/docs/current/static/backup-dump.html#BACKUP-DUMP-RESTORE

devilbox Documentation

*.sql.tar.gz file

Navigate to the Devilbox directory
host> cd path/to/devilbox

Enter the PHP container
host> ./shell.sh

Start the import
devilbox@php-7.1.6 in /shared/httpd $ tar xzOf /shared/backups/pgsql/my_db_name.sql.
→˓tar.gz | psql -h pgsql -U postgres -W my_db_name

14.2.2 Adminer

Adminer supports importing of plain (*.sql) or gzipped compressed (*.sql.gz) files out-of-the-box. Simply
select the compressed or uncompressed file and press Execute in the import section of the web interface.

14.2. Restore 65

https://www.adminer.org

devilbox Documentation

66 Chapter 14. Backup and restore PostgreSQL

CHAPTER 15

Backup and restore MongoDB

Backup and restore will be necessary when you are going to switch MongoDB versions. Each version has its own data
directory and is fully indepentend of other versions. In case you want to switch to a different version, but still want to
have your MongoDB databases present, you must first backup the databases of your current version and import them
into the new version.

There are multiple ways to backup and restore. Chose the one which is most convenient for you.

Table of Contents

• Backup

– mongodump

• Restore

– mongorestore

15.1 Backup

15.1.1 mongodump

mongodump is bundled with each PHP container and reay to use. To backup all databases follow the below listed
example:

Navigate to the Devilbox directory
host> cd path/to/devilbox

Enter the PHP container
host> ./shell.sh

(continues on next page)

67

https://docs.mongodb.com/manual/reference/program/mongodump

devilbox Documentation

(continued from previous page)

Run mongodump
devilbox@php-7.1.6 in /shared/httpd $ mongodump --out /shared/backups/mongo

To find out more about the configuration and options of mongodump, visit its project page under: https://docs.
mongodb.com/manual/reference/program/mongodump.

15.2 Restore

15.2.1 mongorestore

mongorestore is bundled with each PHP container and ready to use. To restore all MongoDB databases follow the
below listed example:

Navigate to the Devilbox directory
host> cd path/to/devilbox

Enter the PHP container
host> ./shell.sh

Start the restore/import from /shared/backups/mongo
devilbox@php-7.1.6 in /shared/httpd $ mongorestore /shared/backups/mongo

To find out more about the configuration and options of mongorestore, visit its project page under: https://docs.
mongodb.com/manual/reference/program/mongorestore/.

68 Chapter 15. Backup and restore MongoDB

https://docs.mongodb.com/manual/reference/program/mongodump
https://docs.mongodb.com/manual/reference/program/mongodump
https://docs.mongodb.com/manual/reference/program/mongorestore
https://docs.mongodb.com/manual/reference/program/mongorestore/
https://docs.mongodb.com/manual/reference/program/mongorestore/

CHAPTER 16

Communicating with external hosts

This tutorial shows you how to connect the Devilbox to running Docker container outside the Devilbox network, i.e.
Docker container you have started separately.

Table of Contents

• Prerequisites

– Host IP: Docker on Linux

– Host IP: Docker for Mac

* Docker 18.03.0-ce+ and Docker compose 1.20.1+

* Docker 17.12.0-ce+ and Docker compose 1.18.0+

* Docker 17.06.0-ce+ and Docker compose 1.14.0+

– Host IP: Docker for Windows

* Docker 18.03.0-ce+ and Docker compose 1.20.1+

* Docker 17.06.0-ce+ and Docker compose 1.14.0+

• Make DNS available to the Devilbox

– Adding extra hosts

– Example

* Mapping on Linux

* Mapping on MacOS

* Mapping on Windows

– Auto DNS

• Further reading

69

devilbox Documentation

16.1 Prerequisites

There are two things you need to make sure of are met beforehand:

1. The external Docker container must expose its ports on all interfaces on your host operating system

2. The IP by which the host is reachable from within the Devilbox container.

16.1.1 Host IP: Docker on Linux

If you run Docker on Linux the host IP is always 172.16.238.1, which is the default gateway IP address within
the Devilbox bridge network (see docker-compose.yml).

By default Docker on Linux does not have CNAME’s of the host computer as for example with MacOS or Windows,
therefore two custom CNAME’s have been added by the Devilbox in order to emulate the same behaviour:

• CNAME: docker.for.lin.host.internal

• CNAME: docker.for.lin.localhost

16.1.2 Host IP: Docker for Mac

If you run Docker for Mac, an IP address is not necessary as it already provides a CNAME which will always point to
the IP address of your host operating system. Depending on the Docker version this CNAME will differ:

Docker 18.03.0-ce+ and Docker compose 1.20.1+

CNAME: host.docker.internal

Docker 17.12.0-ce+ and Docker compose 1.18.0+

CNAME: docker.for.mac.host.internal

Docker 17.06.0-ce+ and Docker compose 1.14.0+

CNAME: docker.for.mac.localhost

16.1.3 Host IP: Docker for Windows

If you run Docker for Windows, an IP address is not necessary as it already provides a CNAME which will always
point to the IP address of your host operating system. Depending on the Docker version this CNAME will differ:

Docker 18.03.0-ce+ and Docker compose 1.20.1+

CNAME: docker.for.win.host.internal

Docker 17.06.0-ce+ and Docker compose 1.14.0+

CNAME: docker.for.win.host.localhost

70 Chapter 16. Communicating with external hosts

devilbox Documentation

16.2 Make DNS available to the Devilbox

Inside each Devilbox Docker container you can already connect to all host ports (if they are bound to all interfaces)
by the above specified IP addresses or CNAME’s. You can however also create a custom DNS entry for convenience
or if an external web server requires a special vhost name.

16.2.1 Adding extra hosts

Extra hosts (hostname and IP address mappings or hostname and CNAME mappings) can be set in the .env file.

See also:

EXTRA_HOSTS

16.2.2 Example

Let’s assume another Docker container is running on your host, which must be accessed by the exact name of
mywebserver.loc in order to respond by that virtual host name.

Mapping on Linux

If you are running Linux as your host operating system you would use the IP address of the host computer which was
identified as 172.16.238.1.

Listing 1: .env

EXTRA_HOSTS=mywebserver.loc=172.16.238.1

or

Listing 2: .env

EXTRA_HOSTS=mywebserver.loc=docker.for.lin.host.internal

or

Listing 3: .env

EXTRA_HOSTS=mywebserver.loc=docker.for.lin.localhost

Mapping on MacOS

If you are running MacOS as your host operating system you would use one of the identified CNAME’s (depending
on your Docker version).

Listing 4: .env

EXTRA_HOSTS=mywebserver.loc=host.docker.internal

The CNAME host.docker.internalwill be resolved to an IP address during startup and mywebserver.loc
‘s DNS record will point to that IP address.

16.2. Make DNS available to the Devilbox 71

devilbox Documentation

Mapping on Windows

If you are running Windows as your host operating system you would use one of the identified CNAME’s (depending
on your Docker version).

Listing 5: .env

EXTRA_HOSTS=mywebserver.loc=docker.for.win.host.internal

The CNAME docker.for.win.host.internal will be resolved to an IP address during startup and
mywebserver.loc ‘s DNS record will point to that IP address.

16.2.3 Auto DNS

If you also turned on Auto-DNS these extra hosts will then also be available to your host operating system as well.

16.3 Further reading

See also:

• EXTRA_HOSTS

• Auto-DNS

72 Chapter 16. Communicating with external hosts

CHAPTER 17

Add your own Docker image

This section is all about customizing the Devilbox and its Docker images specifically to your needs.

Table of Contents

• Prerequisites

• What information do you need?

• How to add a new service?

– Generic example

* A single new service

* Two new services

– CockroachDB example

• How to start the new service?

• Further reading

17.1 Prerequisites

The new Docker image definition will be added to a file called docker-compose.override.yml. So before
going any further, read the following section that shows you how to create this file for the Devilbox as well as what
pitfalls to watch out for.

See also:

docker-compose.override.yml

73

devilbox Documentation

17.2 What information do you need?

1. <name> - A name, which you can use to refer in the docker-compose command

2. <image-name> - The Docker image name itself

3. <image-version> - The Docker image tag

4. <unused-ip-address> - An unused IP address from the devilbox network (found inside
docker-compose.yml)

17.3 How to add a new service?

17.3.1 Generic example

A single new service

Open docker-compose.override.yml with your favourite editor and paste the following snippets into it.

Listing 1: docker-compose.override.yml

version: '2.1'
services:

Your custom Docker image here:
<name>:
image: <image-name>:<image-version>
networks:

app_net:
ipv4_address: <unused-ip-address>

For ease of use always automatically start these:
depends_on:

- bind
- php
- httpd

End of custom Docker image

Note:

• <name> has to be replaced with any name of your choice

• <image-name> has to be replaced with the name of the Docker image

• <image-version> has to be replaced with the tag of the Docker image

• <unused-ip-address> has to be replaced with an unused IP address

Two new services

Listing 2: docker-compose.override.yml

version: '2.1'
services:

Your first custom Docker image here:

(continues on next page)

74 Chapter 17. Add your own Docker image

devilbox Documentation

(continued from previous page)

<name1>:
image: <image1-name>:<image1-version>
networks:

app_net:
ipv4_address: <unused-ip-address1>

For ease of use always automatically start these:
depends_on:

- bind
- php
- httpd

End of first custom Docker image
Your second custom Docker image here:
<name2>:
image: <image2-name>:<image2-version>
networks:

app_net:
ipv4_address: <unused-ip-address2>

For ease of use always automatically start these:
depends_on:

- bind
- php
- httpd

End of second custom Docker image

Note:

• <name1> has to be replaced with any name of your choice

• <image1-name> has to be replaced with the name of the Docker image

• <image1-version> has to be replaced with the tag of the Docker image

• <unused-ip-address1> has to be replaced with an unused IP address

Note:

• <name2> has to be replaced with any name of your choice

• <image2-name> has to be replaced with the name of the Docker image

• <image2-version> has to be replaced with the tag of the Docker image

• <unused-ip-address2> has to be replaced with an unused IP address

17.3.2 CockroachDB example

Gather the requirements for the Cockroach DB Docker image:

1. Name: cockroach

2. Image: cockroachdb/cockroach

3. Tag: latest

4. IP: 172.16.238.200

Now add the information to docker-compose.override.yml:

17.3. How to add a new service? 75

https://hub.docker.com/r/cockroachdb/cockroach/

devilbox Documentation

Listing 3: docker-compose.override.yml

version: '2.1'
services:

Your custom Docker image here:
cockroach:
image: cockroachdb/cockroach:latest
command: start --insecure
networks:

app_net:
ipv4_address: 172.16.238.200

For ease of use always automatically start these:
depends_on:

- bind
- php
- httpd

End of custom Docker image

17.4 How to start the new service?

The following will bring up your service including all of its dependent services, as defined with depends_on (bind,
php and httpd). You need to replace <name> with the name you have chosen.

host> docker-compose up <name>

In the example of Cockroach DB the command would look like this

host> docker-compose up cockroach

17.5 Further reading

See also:

• docker-compose.override.yml

• Overwrite existing Docker image

76 Chapter 17. Add your own Docker image

CHAPTER 18

Overwrite existing Docker image

This section is all about customizing the Devilbox and its Docker images specifically to your needs.

Table of Contents

• Prerequisites

• What information do you need?

• How to overwrite a service?

– Generic steps

– Overwrite Docker image for the bind service

• Further reading

18.1 Prerequisites

The new Docker image overwrite will be added to a file called docker-compose.override.yml. So before
going any further, read the following section that shows you how to create this file for the Devilbox as well as what
pitfalls to watch out for.

See also:

docker-compose.override.yml

18.2 What information do you need?

1. The service to overwrite

77

devilbox Documentation

18.3 How to overwrite a service?

18.3.1 Generic steps

1. Copy the whole service definition from docker-compose.yml to docker-compose.override.yml

2. Remove anything unecessary

3. Adjust the values you need

18.3.2 Overwrite Docker image for the bind service

The following example is using the bind service and overrides the Docker image to illustrate how this is done :

First you simply copy the while definition of the bind service from docker-compose.yml to
docker-compose.override.yml:

Listing 1: docker-compose.override.yml

version: '2.1'
services:

bind:
image: cytopia/bind:0.11
restart: always
ports:

[local-machine:]local-port:docker-port
- "${LOCAL_LISTEN_ADDR}${HOST_PORT_BIND:-1053}:53"
- "${LOCAL_LISTEN_ADDR}${HOST_PORT_BIND:-1053}:53/udp"

environment:
##
Debug?
##
- DEBUG_ENTRYPOINT=${DEBUG_COMPOSE_ENTRYPOINT}
- DOCKER_LOGS=1

##
Bind settings
##
- WILDCARD_ADDRESS=172.16.238.11
- DNS_FORWARDER=${BIND_DNS_RESOLVER:-8.8.8.8,8.8.4.4}

dns:
- 127.0.0.1

networks:
app_net:

ipv4_address: 172.16.238.100

The second step is to remove everything that you do not need to overwrite:

Listing 2: docker-compose.override.yml

version: '2.1'
services:

bind:
image: cytopia/bind:0.11

78 Chapter 18. Overwrite existing Docker image

devilbox Documentation

The last step is to actually adjust the value you want to change for the bind service:

Listing 3: docker-compose.override.yml

version: '2.1'
services:

bind:
image: someother/bind:latest

18.4 Further reading

See also:

• docker-compose.override.yml

• Add your own Docker image

18.4. Further reading 79

devilbox Documentation

80 Chapter 18. Overwrite existing Docker image

CHAPTER 19

Adding Sub domains

This tutorial gives you a brief overview how to serve your project under one subdomain via the project directory name
as well as how to serve one projcet with multiple subdomains with a customized virtual host config via vhost-gen.

Table of Contents

• Single sub domain for one project

• Multiple sub domains for one project

– Prerequisite

– Apache 2.2

* Adding www sub domain

· Step 1: Add DNS entry

· Step 2: Adjust apache22.yml

· Step 3: Apply new changes

* Adding catch-all sub domain

· Step 1: Add DNS entry

· Step 2: Adjust apache22.yml

· Step 3: Apply new changes

– Apache 2.4

– Nginx

* Adding www sub domain

· Step 1: Add DNS entry

· Step 2: Adjust nginx.yml

81

devilbox Documentation

· Step 3: Apply new changes

* Adding catch-all sub domain

· Step 1: Add DNS entry

· Step 2: Adjust nginx.yml

· Step 3: Apply new changes

– Apply changes

– Checklist

19.1 Single sub domain for one project

When you just want to serve your project under a sub domain, you simply name your project directory by the name of
it. See the following examples how you build up your project URL.

Project dir TLD_SUFFIX Project URL
my-test loc http://my-test.loc
www.my-test loc http://www.my-test.loc
t1.www.my-test loc http://t1.www.my-test.loc
my-test com http://my-test.com
www.my-test com http://www.my-test.com
t2.www.my-test com http://t2.www.my-test.com

Whatever name you want to have in front of the TLD_SUFFIX is actually just the directory you create. Generically,
it looks like this:

Project dir TLD_SUFFIX Project URL
<dir-name> <tld> http://<dir-name>.<tld>

19.2 Multiple sub domains for one project

When you want to have multiple domains and/or sub domains for one project (such as in the case of Wordpress multi-
sites), you will need to customize your virtual host config for this project and make the web server allow to serve your
files by different server names.

Each web server virtual host is auto-generated by a tool called vhost-gen. vhost-gen allows you to overwrite its
default generation process via templates. Those templates can be added to each project, giving you the option to
customize the virtual host of this specific project.

Note:

Customized virtual host (vhost-gen) Ensure you have read and understand how to customize your virtual host with
vhost-gen.

HTTPD_TEMPLATE_DIR Ensure you know what this variable does inside your .env file.

Important: When adjusting vhost-gen templates for a project you have to do one of the following:

82 Chapter 19. Adding Sub domains

https://github.com/devilbox/vhost-gen

devilbox Documentation

• Restart the devilbox

• Or rename your project directory to some other name and then rename it back to its original name.

More information here: Apply Changes

Warning: Pay close attention that you do not use TAB (\t) characters for indenting the vhost-gen yaml files.
Some editors might automatically indent using TABs, so ensure they are replaced with spaces. If TAB characters
are present, those files become invalid and won’t work. https://github.com/cytopia/devilbox/issues/142

You can use the bundled yamllint binary inside the container to validate your config.

See also:

• Work inside the container

• Available tools

19.2.1 Prerequisite

Let’s assume the following settings.

Variable Value
Devilbox path /home/user/devilbox
HTTPD_TEMPLATE_DIR .devilbox
HOST_PATH_HTTPD_DATADIR ./data/www
TLD_SUFFIX loc
Project name/directory project-1 (Ensure it exist)

Ensure that the default vhost-gen templates have been copied to your projects template directory:

Navigate to the Devilbox directory
host> cd ./home/user/devilbox

Create template directory in your project
host> mkdir ./data/www/project-1/.devilbox

Copy vhost-gen templates
host> cp templates/vhost-gen/* ./data/www/project-1/.devilbox

By having done all prerequisite, your project should be available under http://my-project-1.loc

Now you are all set and we can dive into the actual configuration.

19.2.2 Apache 2.2

Adding www sub domain

Let’s also make this project available under http://www.my-project-1.loc

19.2. Multiple sub domains for one project 83

https://github.com/cytopia/devilbox/issues/142
http://my-project-1.loc
http://www.my-project-1.loc

devilbox Documentation

Step 1: Add DNS entry

The first step would be to add an additional DNS entry for www.my-project-1.loc. See here how to do that for
Linux, MacOS or Windows: Step 4: create a DNS entry

DNS is in place, however when you visit http://www.my-project-1.loc, you will end up seeing the Devilbox intranet,
because this is the default host when no match has been found.

Step 2: Adjust apache22.yml

Next you will have to adjust the Apache 2.2 vhost configuration template. The current default template looks similar
to the one shown below (Note: Only the vhost: sub section is shown here).

Listing 1: /home/user/devilbox/data/www/project-
1/.devilbox/apache22.yml

vhost: |
<VirtualHost __DEFAULT_VHOST__:__PORT__>

ServerName __VHOST_NAME__

CustomLog "__ACCESS_LOG__" combined
ErrorLog "__ERROR_LOG__"

__VHOST_DOCROOT__
__VHOST_RPROXY__
__PHP_FPM__
__ALIASES__
__DENIES__
__SERVER_STATUS__

Custom directives
__CUSTOM__
</VirtualHost>

All you will have to do, is to add another ServerName directive:

Listing 2: /home/user/devilbox/data/www/project-
1/.devilbox/apache22.yml

vhost: |
<VirtualHost __DEFAULT_VHOST__:__PORT__>

ServerName __VHOST_NAME__
ServerName www.__VHOST_NAME__

CustomLog "__ACCESS_LOG__" combined
ErrorLog "__ERROR_LOG__"

__VHOST_DOCROOT__
__VHOST_RPROXY__
__PHP_FPM__
__ALIASES__
__DENIES__
__SERVER_STATUS__

Custom directives
__CUSTOM__
</VirtualHost>

84 Chapter 19. Adding Sub domains

http://www.my-project-1.loc

devilbox Documentation

Step 3: Apply new changes

The last step is to actually to apply those changes. This is equal for all web servers. Go to Apply changes and follow
the steps.

Afterwards you can go and visit http://www.my-project-1.loc and you should see the same page as if you visit http:
//my-project-1.loc

Adding catch-all sub domain

Let’s also make this project available under any sub domain.

Step 1: Add DNS entry

The first step would be to add DNS entries for all sub domains you require. See here how to do that for Linux, MacOS
or Windows: Step 4: create a DNS entry

This however is not really convenient. If you have basically infinite sub domains (via catch-all), you should consider
using Auto-DNS instead: Auto-DNS.

Step 2: Adjust apache22.yml

Next you will have to adjust the Apache 2.2 vhost configuration template. The current default template looks similar
to the one shown below (Note: Only the vhost: sub section is shown here).

Listing 3: /home/user/devilbox/data/www/project-
1/.devilbox/apache22.yml

vhost: |
<VirtualHost __DEFAULT_VHOST__:__PORT__>

ServerName __VHOST_NAME__

CustomLog "__ACCESS_LOG__" combined
ErrorLog "__ERROR_LOG__"

__VHOST_DOCROOT__
__VHOST_RPROXY__
__PHP_FPM__
__ALIASES__
__DENIES__
__SERVER_STATUS__

Custom directives
__CUSTOM__
</VirtualHost>

All you will have to do, is to add another ServerName directive which does catch-all:

Listing 4: /home/user/devilbox/data/www/project-
1/.devilbox/apache22.yml

vhost: |
<VirtualHost __DEFAULT_VHOST__:__PORT__>

ServerName __VHOST_NAME__
ServerName *.__VHOST_NAME__

(continues on next page)

19.2. Multiple sub domains for one project 85

http://www.my-project-1.loc
http://my-project-1.loc
http://my-project-1.loc

devilbox Documentation

(continued from previous page)

CustomLog "__ACCESS_LOG__" combined
ErrorLog "__ERROR_LOG__"

__VHOST_DOCROOT__
__VHOST_RPROXY__
__PHP_FPM__
__ALIASES__
__DENIES__
__SERVER_STATUS__

Custom directives
__CUSTOM__
</VirtualHost>

Step 3: Apply new changes

The last step is to actually to apply those changes. This is equal for all web servers. Go to Apply changes and follow
the steps.

19.2.3 Apache 2.4

The procedure for Apache 2.4 is exactly the same as for Apache 2.2, even the syntax is identical. The only difference
is that you need to adjust apache24.yml instead of apache22.yml.

Just go up one section: Apache 2.2

19.2.4 Nginx

The procedure for Nginx is also exactly the same as for Apache 2.4, however the syntax of its nginx.yml file is
slightly different, that’s why the whole tutorial will be repeated here fitted for Nginx.

Adding www sub domain

Let’s also make this project available under http://www.my-project-1.loc

Step 1: Add DNS entry

The first step would be to add an additional DNS entry for www.my-project-1.loc. See here how to do that for
Linux, MacOS or Windows: Step 4: create a DNS entry

DNS is in place, however when you visit http://www.my-project-1.loc, you will end up seeing the Devilbox intranet,
because this is the default host when no match has been found.

Step 2: Adjust nginx.yml

Next you will have to adjust the Nginx vhost configuration template. The current default template looks similar to the
one shown below (Note: Only the vhost: sub section is shown here).

86 Chapter 19. Adding Sub domains

http://www.my-project-1.loc
http://www.my-project-1.loc

devilbox Documentation

Listing 5: /home/user/devilbox/data/www/project-
1/.devilbox/nginx.yml

vhost: |
server {

listen __PORT____DEFAULT_VHOST__;
server_name __VHOST_NAME__;

access_log "__ACCESS_LOG__" combined;
error_log "__ERROR_LOG__" warn;

__VHOST_DOCROOT__
__VHOST_RPROXY__
__PHP_FPM__
__ALIASES__
__DENIES__
__SERVER_STATUS__

Custom directives
__CUSTOM__
}

All you will have to do, is to extend the server_name directive:

Listing 6: /home/user/devilbox/data/www/project-
1/.devilbox/nginx.yml

vhost: |
server {

listen __PORT____DEFAULT_VHOST__;
server_name __VHOST_NAME__ www.__VHOST_NAME__;

access_log "__ACCESS_LOG__" combined;
error_log "__ERROR_LOG__" warn;

__VHOST_DOCROOT__
__VHOST_RPROXY__
__PHP_FPM__
__ALIASES__
__DENIES__
__SERVER_STATUS__

Custom directives
__CUSTOM__
}

Step 3: Apply new changes

The last step is to actually to apply those changes. This is equal for all web servers. Go to Apply changes and follow
the steps.

Afterwards you can go and visit http://www.my-project-1.loc and you should see the same page as if you visit http:
//my-project-1.loc

Adding catch-all sub domain

Let’s also make this project available under any sub domain.

19.2. Multiple sub domains for one project 87

http://www.my-project-1.loc
http://my-project-1.loc
http://my-project-1.loc

devilbox Documentation

Step 1: Add DNS entry

The first step would be to add DNS entries for all sub domains you require. See here how to do that for Linux, MacOS
or Windows: Step 4: create a DNS entry

This however is not really convenient. If you have basically infinite sub domains (via catch-all), you should consider
using Auto-DNS instead: Auto-DNS.

Step 2: Adjust nginx.yml

Next you will have to adjust the Nginx vhost configuration template. The current default template looks similar to the
one shown below (Note: Only the vhost: sub section is shown here).

Listing 7: /home/user/devilbox/data/www/project-
1/.devilbox/nginx.yml

vhost: |
server {

listen __PORT____DEFAULT_VHOST__;
server_name __VHOST_NAME__;

access_log "__ACCESS_LOG__" combined;
error_log "__ERROR_LOG__" warn;

__VHOST_DOCROOT__
__VHOST_RPROXY__
__PHP_FPM__
__ALIASES__
__DENIES__
__SERVER_STATUS__

Custom directives
__CUSTOM__
}

All you will have to do, is to extend the server_name directive with a catch-all:

Listing 8: /home/user/devilbox/data/www/project-
1/.devilbox/nginx.yml

vhost: |
server {

listen __PORT____DEFAULT_VHOST__;
server_name __VHOST_NAME__ *.__VHOST_NAME__;

access_log "__ACCESS_LOG__" combined;
error_log "__ERROR_LOG__" warn;

__VHOST_DOCROOT__
__VHOST_RPROXY__
__PHP_FPM__
__ALIASES__
__DENIES__
__SERVER_STATUS__

Custom directives
__CUSTOM__
}

88 Chapter 19. Adding Sub domains

devilbox Documentation

Step 3: Apply new changes

The last step is to actually to apply those changes. This is equal for all web servers. Go to Apply changes and follow
the steps.

19.2.5 Apply changes

After having edited your vhost-gen template files, you still need to apply these changes. This can be achieved in two
ways:

1. Restart the Devilbox

2. Rename your project directory back and forth

Let’s cover the second step

Navigate to the data directory
host> /home/user/devilbox/data/www

Rename your project to something else
host> mv project-1 project-1.tmp

Rename your project to its original name
host> mv project-1.tmp project-1

If you want to understand what is going on right now, check the docker logs for the web server.

Navigate to the devilbox directory
host> /home/user/devilbox

Check docker logs
host> docker-compose logs httpd

httpd_1 | vhostgen: [2018-03-18 11:46:52] Adding: project-1.tmp.loc
httpd_1 | watcherd: [2018-03-18 11:46:52] [OK] ADD: succeeded: /shared/httpd/
→˓project-1.tmp
httpd_1 | watcherd: [2018-03-18 11:46:52] [OK] DEL: succeeded: /shared/httpd/
→˓project-1
httpd_1 | watcherd: [2018-03-18 11:46:52] [OK] TRIGGER succeeded: /usr/local/
→˓apache2/bin/httpd -k restart

httpd_1 | vhostgen: [2018-03-18 11:46:52] Adding: project-1loc
httpd_1 | watcherd: [2018-03-18 11:46:52] [OK] ADD: succeeded: /shared/httpd/
→˓project-1
httpd_1 | watcherd: [2018-03-18 11:46:52] [OK] DEL: succeeded: /shared/httpd/
→˓project-1.tmp
httpd_1 | watcherd: [2018-03-18 11:46:52] [OK] TRIGGER succeeded: /usr/local/
→˓apache2/bin/httpd -k restart

What happened?

The directory changes have been noticed and a new virtual host has been created. This time however your new vhost-
gen template has been read and the changes have applied.

19.2. Multiple sub domains for one project 89

devilbox Documentation

19.2.6 Checklist

1. Template files are copied from templates/vhost-gen/* to your project template dir (as specified in .env
via HTTPD_TEMPLATE_DIR)

2. Ensure the vhost-gen yaml files are valid (No tab characters)

3. When templates are edited, the Devilbox is either restarted or the project directory is renamed to something else
and then renamed back to its original name

90 Chapter 19. Adding Sub domains

CHAPTER 20

Change container versions

One of the core concepts of the Devilbox is to easily change between different versions of a specific service.

Table of Contents

• Change PHP version

– Stop the Devilbox

– Edit the .env file

– Start the Devilbox

– Gotchas

• Change whatever version

• Checklist

20.1 Change PHP version

20.1.1 Stop the Devilbox

Shut down the Devilbox in case it is still running:

Navigate to the Devilbox directory
host> /home/user/devilbox

Stop all container
host> docker-compose stop

91

devilbox Documentation

20.1.2 Edit the .env file

Open the .env file with your favourite editor and navigate to the PHP_SERVER section. It will look something like
this:

Listing 1: .env

#PHP_SERVER=5.4
#PHP_SERVER=5.5
#PHP_SERVER=5.6
#PHP_SERVER=7.0
PHP_SERVER=7.1
#PHP_SERVER=7.1

As you can see, all available values are already there, but commented. Only one is uncommented. In this example it is
7.1, which is the PHP version that will be started, once the Devilbox starts.

To change this, simply uncomment your version of choice and save this file. Do not forget to comment (disable) any
other version.

In order to enable PHP 5.5, you would change the .env file like this:

Listing 2: .env

#PHP_SERVER=5.4
PHP_SERVER=5.5
#PHP_SERVER=5.6
#PHP_SERVER=7.0
#PHP_SERVER=7.1
#PHP_SERVER=7.1

20.1.3 Start the Devilbox

Now save the file and you can start the Devilbox again.

Navigate to the Devilbox directory
host> /home/user/devilbox

Stop all container
host> docker-compose up php httpd bind

See also:

Start the Devilbox

20.1.4 Gotchas

If two versions are uncommented, always the last one takes precedence.

Consider this .env file:

Listing 3: .env

#PHP_SERVER=5.4
PHP_SERVER=5.5
#PHP_SERVER=5.6

(continues on next page)

92 Chapter 20. Change container versions

devilbox Documentation

(continued from previous page)

PHP_SERVER=7.0
#PHP_SERVER=7.1
#PHP_SERVER=7.1

Both, PHP 5.4 and PHP 7.0 are uncommented, however, when you start the Devilbox, it will use PHP 7.0 as this value
overwrites any previous ones.

20.2 Change whatever version

When you have read how to change the PHP version, it should be fairly simple to change any service version. It
behaves in the exact same way.

The variable names of all available services with changable versions are in the following format:
<SERVICE>_SERVER. Just look through the .env file.

See also:

The following variables control service versions: PHP_SERVER, HTTPD_SERVER, MYSQL_SERVER,
PGSQL_SERVER, REDIS_SERVER, MEMCD_SERVER, MONGO_SERVER

20.3 Checklist

1. Stop the Devilbox

2. Uncomment version of choice in .env

3. Start the Devilbox

20.2. Change whatever version 93

devilbox Documentation

94 Chapter 20. Change container versions

CHAPTER 21

Work inside the container

The Devilbox allows you to completely work inside the PHP container (no matter what version), instead of your host
operating system.

This brings a lot of advantages, such as that you don’t have to install any development tool on your OS or if you are
on Windows, you get a full blown Linux environment.

Additionally, special port-bindings and forwards are in place that allows you to even interchangably work locally or
inside the container without having to alter any php config for database and other connections.

See also:

Available tools

Table of Contents

• Enter the container

– Entering from Linux or MacOS: shell.sh

– Entering from Windows: shell.bat

• Inside the container

– devilbox user

– root user

• Leave the container

• Host to Container mappings

– File and directory Permissions

– Directory mappings

– IP address mappings

– Port mappings

95

devilbox Documentation

– DNS mappings

• Checklist

21.1 Enter the container

Entering the computer is fairly simple. The Devilbox ships with two scripts to do that. One for Linux and MacOS
(shell.sh) and another one for Windows (shell.bat).

21.1.1 Entering from Linux or MacOS: shell.sh

Navigate to the Devilbox directory
host> cd /path/to/devilbox

Run provided script
host> ./shell.sh

Now you are inside the PHP Linux container
devilbox@php-7.0.19 in /shared/httpd $

21.1.2 Entering from Windows: shell.bat

Navigate to the Devilbox directory
C:/> cd C:/Users/user1/devilbox

Run provided script
C:/Users/user1/devilbox> shell.bat

Now you are inside the PHP Linux container
devilbox@php-7.0.19 in /shared/httpd $

21.2 Inside the container

21.2.1 devilbox user

By using the provided scripts to enter the container you will become the user devilbox. This user will have the
same uid and gid as the user from your host operating system.

So no matter what files or directories you create inside the container, they will have the same permissions and uid/gid
set your host operating system. This of course also works the other way round.

The uid and gid mappings are controlled via two .env variables called NEW_UID and NEW_GID

See also:

If you want to find out more about synronized container permissions read up here: Syncronize container permissions

96 Chapter 21. Work inside the container

devilbox Documentation

21.2.2 root user

Sometimes however it is also necessary to do some actions that require super user privileges. You can always become
root inside the container by either impersonating it or by using sudo to issue commands.

By default sudo is configured to be used without passwords, so you can simply do the following:

As user devilbox inside the container
devilbox@php-7.0.19 in /shared/httpd $ sudo su -

You are now the root user
root@php-7.0.19 in /shared/httpd $

You can also use sudo to run commands with root privileges without having to become root first.

As user devilbox inside the container
devilbox@php-7.0.19 in /shared/httpd $ sudo apt update
devilbox@php-7.0.19 in /shared/httpd $ sudo apt install nmap

21.3 Leave the container

When you are inside the container and want to return to your host operating, just type exit and you are out.

As user devilbox inside the container
devilbox@php-7.0.19 in /shared/httpd $ exit

You are now back on your host operating system
host>

21.4 Host to Container mappings

This section will give you an idea that there is actually no difference from inside the container and on your host
operating system. Directory permissions, IP addresses, ports and DNS entries are fully syncronized allowing you to
switch between container and host without having to change any settings.

21.4.1 File and directory Permissions

The username inside the container (devilbox) might be different from your local host operating system username,
however its actual uid and gid will match. This is to ensure file and directory permissions are synronized inside and
outside the container and no matter from which side you create files and directories, it will always look as if they are
owned by your system user.

The uid and gid mappings are controlled via two .env variables called NEW_UID and NEW_GID

21.4.2 Directory mappings

One thing you should understand is the relation between the directories on your host operating system and the corre-
sponding directory inside the PHP container.

21.3. Leave the container 97

devilbox Documentation

The location of the data directory (HOST_PATH_HTTPD_DATADIR) on your host computer is controlled via the
HOST_PATH_HTTPD_DATADIR variable inside the .env file. No matter what location you set it to, inside the
container it will always be mapped to /shared/httpd.

See the following table for a few examples:

Host operating system Inside PHP container
Data dir ./www/data /shared/httpd
Data dir /home/user1/www /shared/httpd
Data dir /var/www /shared/httpd

21.4.3 IP address mappings

The following table shows a mapping of IP addresses of available service from the perspective of your host operating
system and from within the PHP container.

Service IP from host os IP from within PHP container
PHP 127.0.0.1 127.0.0.1
Apache/Nginx 127.0.0.1 127.0.0.1
MySQL 127.0.0.1 127.0.0.1
PostgreSQL 127.0.0.1 127.0.0.1
Redis 127.0.0.1 127.0.0.1
Memcached 127.0.0.1 127.0.0.1
MongoDB 127.0.0.1 127.0.0.1

As you can see, everyhing is available under 127.0.0.1.

The PHP container is using socat to forward the services from all other available containers to its own 127.0.0.1
address.

An example to access the MySQL database from either host or within the PHP container is the same:

Access MySQL from your host operating system
host> mysql -h 127.0.0.1

Access MySQL from within the PHP container
devilbox@php-7.0.19 in /shared/httpd $ mysql -h 127.0.0.1

Important: Do not use localhost to access the services, it does not map to 127.0.0.1 on all cases.

So when setting up a configuration file from your PHP project you would for example use 127.0.0. as the host for
your MySQL database connection:

<?php
// MySQL server connection
mysql_host = '127.0.0.1';
mysql_port = '3306';
mysql_user = 'someusername';
mysql_pass = 'somepassword';
?>

98 Chapter 21. Work inside the container

devilbox Documentation

Imagine your PHP framework ships a command line tool to run database migration. You could run it from your host
operating system or from within the PHP container. It would work from both sides as the connection to the database
is exactly the same locally or within the container.

You could also even switch between the Devilbox and a locally installed LAMP stack and still use the same configu-
ration.

Warning: The mapping of 127.0.0.1 to your host operating system does not work with Docker Toolbox.

21.4.4 Port mappings

By default, ports are also synronized between host operating system (the ports that are exposed) and the ports within
the PHP container. This is however also configurable inside the .env file.

Service Port from host os Port from within PHP container
PHP NA 9000
Apache/Nginx 80 80
MySQL 3306 3306
PostgreSQL 5432 5432
Redis 6379 6379
Memcached 11211 11211
MongoDB 27017 27017

21.4.5 DNS mappings

All project DNS records are also available from inside the PHP container independent of the value of TLD_SUFFIX.

The PHP container is hooked up by default to the bundled DNS server and makes use Auto-DNS.

See also:

You can achieve the same on your host operating system by explicitly enabling auto-dns. See also: Auto-DNS.

21.5 Checklist

1. You know how to enter the PHP container

2. You know how to become root inside the PHP container

3. You know how to leave the container

4. You know that file and directory permissions are synronized

5. You know that 127.0.0.1 is available on your host and inside the PHP container

6. You know that ports are the same inside the container and on your host os

7. You know that project urls are available inside the container and on your host

8. You know about the limitations of Docker Toolbox

21.5. Checklist 99

devilbox Documentation

100 Chapter 21. Work inside the container

CHAPTER 22

Enable Xdebug

This tutorial shows you how to enable and use Xdebug with the Devilbox.

See also:

If you are unsure of how to add custom *.ini files to the Devilbox, have a look at this section first: php.ini

Table of Contents

• Enable Xdebug

– Required for all OS

* default_enable

* remote_enable

* remote_handler

* remote_port

* remote_autostart

* idekey

* remote_log

– Linux

– MacOS (Docker for Mac)

– MacOS (Docker Toolbox)

– Windows (Docker for Windows)

– Windows (Docker Toolbox)

• Configure your IDE

– Required for all IDE

101

devilbox Documentation

* Path mapping

* IDE key

* Port

– Atom

* Linux

* MacOS (Docker for Mac)

* MacOS (Docker Toolbox)

* Windows (Docker for Windows)

* Windows (Docker Toolbox)

– PHPStorm

* Linux

* MacOS (Docker for Mac)

* MacOS (Docker Toolbox)

* Windows (Docker for Windows)

* Windows (Docker Toolbox)

– Sublime Text 3

* Linux

* MacOS (Docker for Mac)

* MacOS (Docker Toolbox)

* Windows (Docker for Windows)

* Windows (Docker Toolbox)

– Visual Studio Code

* Linux

* MacOS (Docker for Mac)

* MacOS (Docker Toolbox)

* Windows (Docker for Windows)

* Windows (Docker Toolbox)

22.1 Enable Xdebug

This section shows you the minimum required *.ini ini settings to get xdebug to work with the Devilbox. It will
also highlight the differences between operating system and Docker versions.

See also:

See here for how to add the *.ini values to the Devilbox: php.ini.

Once you have configured Xdebug, you can verify it at the Devilbox intranet: http://localhost/info_php.php

102 Chapter 22. Enable Xdebug

http://localhost/info_php.php

devilbox Documentation

22.1.1 Required for all OS

Additionally to the specific configurations for each operating system and Docker version you will probably also want
to add the following to your ini file:

Listing 1: xdebug.ini

xdebug.default_enable=1
xdebug.remote_enable=1
xdebug.remote_handler=dbgp
xdebug.remote_port=9000
xdebug.remote_autostart=1
xdebug.idekey="PHPSTORM"
xdebug.remote_log=/var/log/php/xdebug.log

See also:

https://xdebug.org/docs/all_settings

default_enable

By enabling this, stacktraces will be shown by default on an error event. It is advisable to leave this setting set to 1.

remote_enable

This switch controls whether Xdebug should try to contact a debug client which is listening on the host and port as set
with the settings xdebug.remote_host and xdebug.remote_port. If a connection can not be established
the script will just continue as if this setting was 0.

remote_handler

Can be either 'php3' which selects the old PHP 3 style debugger output, 'gdb' which enables the GDB like
debugger interface or 'dbgp' - the debugger protocol. The DBGp protocol is the only supported protocol.

Note: Xdebug 2.1 and later only support 'dbgp' as protocol.

remote_port

The port to which Xdebug tries to connect on the remote host. Port 9000 is the default for both the client and the
bundled debugclient. As many clients use this port number, it is best to leave this setting unchanged.

remote_autostart

Normally you need to use a specific HTTP GET/POST variable to start remote debugging (see Remote Debugging).
When this setting is set to 1, Xdebug will always attempt to start a remote debugging session and try to connect to a
client, even if the GET/POST/COOKIE variable was not present.

idekey

Controls which IDE Key Xdebug should pass on to the DBGp debugger handler. The default is based on environment
settings. First the environment setting DBGP_IDEKEY is consulted, then USER and as last USERNAME. The default

22.1. Enable Xdebug 103

https://xdebug.org/docs/all_settings
https://xdebug.org/docs/remote#browser_session

devilbox Documentation

is set to the first environment variable that is found. If none could be found the setting has as default ‘’. If this setting
is set, it always overrides the environment variables.

For the sake of this tutorial we are going to use PHPSTORM as an example value.

remote_log

Keep the exact path of /var/log/php/xdebug.log. You will then have the log file available in the Devilbox log
directory of the PHP version for which you have configured Xdebug.

Important: You can set the value of xdebug.idekey to whatever you like, however it is important to remember
what value you have set. Throughout the examples in this tutorial it is assumed, that the value is PHPSTORM.

22.1.2 Linux

Listing 2: xdebug.ini

xdebug.remote_connect_back=1

22.1.3 MacOS (Docker for Mac)

Docker 18.03.0-ce+ and Docker compose 1.20.1+

Listing 3: xdebug.ini

xdebug.remote_host=host.docker.internal
xdebug.remote_connect_back=0

Docker 17.12.0-ce+ and Docker compose 1.18.0+

Listing 4: xdebug.ini

xdebug.remote_host=docker.for.mac.host.internal
xdebug.remote_connect_back=0

Docker 17.06.0-ce+ and Docker compose 1.14.0+

Listing 5: xdebug.ini

xdebug.remote_host=docker.for.mac.localhost
xdebug.remote_connect_back=0

If you have older versions, upgrade.

22.1.4 MacOS (Docker Toolbox)

Warning: This is a legacy solution, upgrade to Docker for Mac https://docs.docker.com/toolbox

104 Chapter 22. Enable Xdebug

https://docs.docker.com/toolbox

devilbox Documentation

22.1.5 Windows (Docker for Windows)

Docker 18.03.0-ce+ and Docker compose 1.20.1+

Listing 6: xdebug.ini

xdebug.remote_host=docker.for.win.host.internal
xdebug.remote_connect_back=0

Docker 17.06.0-ce+ and Docker compose 1.14.0+

Listing 7: xdebug.ini

xdebug.remote_host=docker.for.win.host.localhost
xdebug.remote_connect_back=0

If you have older versions, upgrade.

22.1.6 Windows (Docker Toolbox)

Warning: This is a legacy solution, upgrade to Docker for Windows https://docs.docker.com/toolbox

22.2 Configure your IDE

22.2.1 Required for all IDE

Path mapping

The path mapping is a mapping between the file path on your host operating system and the one inside the PHP Docker
container.

The path on your host operating system is the one you have set in HOST_PATH_HTTPD_DATADIR. In case you have
set a relative path in .env, ensure to retrieve the absolute path of it when setting up your IDE config.

The path inside the PHP Docker container is always /shared/httpd.

Important: Even though your path in .env for HOST_PATH_HTTPD_DATADIR might be relative (e.g. ./data/
www), you need to get the actualy absolute path of it, when setting up your IDE.

IDE key

This is the value you have set in xdebug.ini for xdebug.idekey. In the example of this tutorial, the value was
set to PHPSTORM.

Port

This is the value you have set in xdebug.ini for xdebug.remote_port. In the example of this tutorial, the
value was set to 9000.

22.2. Configure your IDE 105

https://docs.docker.com/toolbox

devilbox Documentation

22.2.2 Atom

1. Install php-debug

2. Configure config.cson (File -> Config. . .)

3. Adjust your xdebug.ini

For Atom, you need to provide a different xdebug.idekey in your php.ini file xdebug.ini:

Listing 8: xdebug.ini

xdebug.idekey=xdebug.atom

Linux

Listing 9: launch.json

"php-debug":
{
ServerPort: 9000
PathMaps: [

"remotepath;localpath"
"/shared/httpd;/home/cytopia/repo/devilbox/data/www"

]
}

MacOS (Docker for Mac)

Todo: Help needed. Please provide your config.

MacOS (Docker Toolbox)

Todo: Help needed. Please provide your config.

Windows (Docker for Windows)

Todo: Help needed. Please provide your config.

Windows (Docker Toolbox)

Todo: Help needed. Please provide your config.

106 Chapter 22. Enable Xdebug

https://atom.io/packages/php-debug

devilbox Documentation

22.2.3 PHPStorm

Linux

Enable Xdebug for the port set in xdebug.ini:

Create a new PHP server and set a path mapping. This tutorial assumes your local Devilbox projects to be in ./
data/www of the Devilbox git directory:

22.2. Configure your IDE 107

devilbox Documentation

Set DBGp proxy settings:

108 Chapter 22. Enable Xdebug

devilbox Documentation

MacOS (Docker for Mac)

Todo: Help needed. Please provide your config.

MacOS (Docker Toolbox)

Todo: Help needed. Please provide your config.

Windows (Docker for Windows)

Todo: Help needed. Please provide your config.

Windows (Docker Toolbox)

Todo: Help needed. Please provide your config.

22.2.4 Sublime Text 3

1. Install Xdebug Client via the Sublime Package Control.

2. Configure Xdebug.sublime-settings (Tools -> Xdebug -> Settings - User)

Linux

Listing 10: Xdebug-sublime-settings

{
"path_mapping": {

"/shared/httpd" : "/home/cytopia/repo/devilbox/data/www"
},
"url": "",
"ide_key": "PHPSTORM",
"host": "0.0.0.0",
"port": 9000

}

MacOS (Docker for Mac)

Todo: Help needed. Please provide your config.

22.2. Configure your IDE 109

https://github.com/martomo/SublimeTextXdebug

devilbox Documentation

MacOS (Docker Toolbox)

Todo: Help needed. Please provide your config.

Windows (Docker for Windows)

Todo: Help needed. Please provide your config.

Windows (Docker Toolbox)

Todo: Help needed. Please provide your config.

22.2.5 Visual Studio Code

1. Install vscode-php-debug

2. Configure launch.json

Linux

Listing 11: launch.json

{
"version": "0.2.0",
"configurations": [

{
"name": "Listen for Xbebug",
"type": "php",
"request": "launch",
"port": 9000,
"serverSourceRoot": "/shared/httpd",
"localSourceRoot": "/home/cytopia/repo/devilbox/data/www"

}, {
"name": "Launch currently open script",
"type": "php",
"request": "launch",
"program": "${file}",
"cwd": "${fileDirname}",
"port": 9000

}
]

}

MacOS (Docker for Mac)

110 Chapter 22. Enable Xdebug

https://github.com/felixfbecker/vscode-php-debug

devilbox Documentation

Todo: Help needed. Please provide your config.

MacOS (Docker Toolbox)

Todo: Help needed. Please provide your config.

Windows (Docker for Windows)

Todo: Help needed. Please provide your config.

Windows (Docker Toolbox)

Todo: Help needed. Please provide your config.

22.2. Configure your IDE 111

devilbox Documentation

112 Chapter 22. Enable Xdebug

CHAPTER 23

Custom environment variables

If your application requires a variable to determine if it is run under development or production, you can easily add it
and make PHP aware of it.

Table of Contents

• Add custom environment variables

• Use custom environment variables

23.1 Add custom environment variables

This is fairly simple. Any variable inside the .env file is considered an environment variable and automatically known
to PHP.

If you for example require a variable APPLICATION_ENV, with a value of production, you would add the fol-
lowing to the .env file:

Listing 1: .env

APPLICATION_ENV=production

You need to restart the Devilbox for the changes to take effect.

Note: There is already a proposed section inside the .env file at the very bottom to add you custom variables to
differentiate them from the Devilbox required variables.

113

devilbox Documentation

23.2 Use custom environment variables

Accessing the above defined environment variable on the PHP side is also fairly simple. You can use the PHP’s built-in
function getenv to obtain the value:

Listing 2: index.php

<?php
// Example use of getenv()
echo getenv('APPLICATION_ENV');
?>

114 Chapter 23. Custom environment variables

CHAPTER 24

Static Code Analysis

This tutorial gives you a general overview how to do static code analysis from within the PHP container.

See also:

• Available tools

• Work inside the container

Table of Contents

• Awesome-ci

• PHPCS

• ESLint

24.1 Awesome-ci

Awesome-ci is a collection of tools for analysing your workspace and its files. You can for example check for:

• git conflicts

• git ignored files that have not been removed from the git index

• trailing spaces and newlines

• non-utf8 files or utf8 files with bom

• windows line feeds

• null-byte characters

• empty files

• syntax errors for various languages

115

devilbox Documentation

• inline css or js code

• customized regex

Some of the bundled tools even allow for automatic fixing.

See also:

awesome-ci

1. Enter your PHP container
host> ./bash

2. Go to your project folder
devilbox@php-7.0.20 $ cd /shared/httpd/my-project

3. Run the tools
devilbox@php-7.0.20 $ git-conflicts --path=.
devilbox@php-7.0.20 $ git-ignored --path=.
devilbox@php-7.0.20 $ file-cr --path=.
devilbox@php-7.0.20 $ file-crlf --path=.
devilbox@php-7.0.20 $ file-empty --path=.

4. Run tools with more options
devilbox@php-7.0.20 $ syntax-php --path=. --extension=php
devilbox@php-7.0.20 $ syntax-php --path=. --shebang=php

5. Various syntax checks
devilbox@php-7.0.20 $ syntax-bash --path=. --text --extension=sh
devilbox@php-7.0.20 $ syntax-css --path=. --text --extension=css
devilbox@php-7.0.20 $ syntax-js --path=. --text --extension=js
devilbox@php-7.0.20 $ syntax-json --path=. --text --extension=json
devilbox@php-7.0.20 $ syntax-markdown --path=. --text --extension=md
devilbox@php-7.0.20 $ syntax-perl --path=. --text --extension=pl
devilbox@php-7.0.20 $ syntax-php --path=. --text --extension=php
devilbox@php-7.0.20 $ syntax-python --path=. --text --extension=python
devilbox@php-7.0.20 $ syntax-ruby --path=. --text --extension=rb
devilbox@php-7.0.20 $ syntax-scss --path=. --text --extension=scss

24.2 PHPCS

PHPCS is a code style analyser for PHP.

See also:

PHPCS

1. Enter your PHP container
host> ./bash

2. Go to your project folder
devilbox@php-7.0.20 $ cd /shared/httpd/my-project

3. Run it
devilbox@php-7.0.20 $ phpcs .

116 Chapter 24. Static Code Analysis

https://github.com/cytopia/awesome-ci
https://github.com/squizlabs/PHP_CodeSniffer

devilbox Documentation

24.3 ESLint

ESLint is a Javascript static source code analyzer.

See also:

ESLint

1. Enter your PHP container
host> ./bash

2. Go to your project folder
devilbox@php-7.0.20 $ cd /shared/httpd/my-project

3. Run it
devilbox@php-7.0.20 $ eslint .

24.3. ESLint 117

http://eslint.org

devilbox Documentation

118 Chapter 24. Static Code Analysis

CHAPTER 25

Setup CakePHP

This example will use composer to install CakePHP from within the PHP container.

See also:

Official CakePHP Documentation

Table of Contents

• Overview

• Walk through

– 1. Enter the PHP container

– 2. Create new vhost directory

– 3. Install CakePHP

– 4. Symlink webroot

– 5. Add MySQL Database

– 6. Configure database connection

– 7. DNS record

– 8. Open your browser

25.1 Overview

The following configuration will be used:

Project name VirtualHost directory Database TLD_SUFFIX Project URL
my-cake /shared/httpd/my-cake my_cake loc http://my-cake.loc

119

https://book.cakephp.org/3.0/en/installation.html
http://my-cake.loc

devilbox Documentation

25.2 Walk through

It will be ready in eight simple steps:

1. Enter the PHP container

2. Create a new VirtualHost directory

3. Install CakePHP via composer

4. Symlink webroot directory

5. Add MySQL database

6. Configure datbase connection

7. Setup DNS record

8. Visit http://my-cake.loc in your browser

See also:

Available tools

25.2.1 1. Enter the PHP container

host> ./shell.sh

See also:

Work inside the container

25.2.2 2. Create new vhost directory

devilbox@php-7.0.20 in /shared/httpd $ mkdir my-cake

25.2.3 3. Install CakePHP

devilbox@php-7.0.20 in /shared/httpd $ cd my-cake
devilbox@php-7.0.20 in /shared/httpd/my-cake $ composer create-project --prefer-dist
→˓cakephp/app cakephp

25.2.4 4. Symlink webroot

devilbox@php-7.0.20 in /shared/httpd/my-cake $ ln -s cakephp/webroot/ htdocs

25.2.5 5. Add MySQL Database

devilbox@php-7.0.20 in /shared/httpd/my-cake $ mysql -u root -h 127.0.0.1 -p -e
→˓'CREATE DATABASE my_cake;'

120 Chapter 25. Setup CakePHP

http://my-cake.loc

devilbox Documentation

25.2.6 6. Configure database connection

devilbox@php-7.0.20 in /shared/httpd/my-cake $ vi cakephp/config/app.php

Listing 1: cakephp/config/app.php

<?php
'Datasources' => [

'default' => [
'className' => 'Cake\Database\Connection',
'driver' => 'Cake\Database\Driver\Mysql',
'persistent' => false,
'host' => '127.0.0.1',
/**
* CakePHP will use the default DB port based on the driver selected

* MySQL on MAMP uses port 8889, MAMP users will want to uncomment

* the following line and set the port accordingly

*/
//'port' => 'non_standard_port_number',
'username' => 'root',
'password' => 'secret',
'database' => 'my_cake',
'encoding' => 'utf8',
'timezone' => 'UTC',
'flags' => [],
'cacheMetadata' => true,

?>

25.2.7 7. DNS record

If you do not have Auto-DNS configured, you will need to add the following line to your host operating systems
/etc/hosts file (or C:\Windows\System32\drivers\etc on Windows):

Listing 2: /etc/hosts

127.0.0.1 my-cake.loc

See also:

For in-depth info about adding DNS records on Linux, Windows or MacOS see: DNS records or Auto-DNS.

25.2.8 8. Open your browser

All set now, you can visit http://my-cake.loc in your browser.

25.2. Walk through 121

http://my-cake.loc

devilbox Documentation

122 Chapter 25. Setup CakePHP

CHAPTER 26

Setup Drupal

This example will use drush to install Drupal from within the PHP container.

See also:

Official Drupal Documentation

Table of Contents

• Overview

• Walk through

– 1. Enter the PHP container

– 2. Create new vhost directory

– 3. Install Drupal

– 4. Symlink webroot

– 5. DNS record

– 6. Open your browser

26.1 Overview

The following configuration will be used:

Project name VirtualHost directory Database TLD_SUFFIX Project URL
my-drupal /shared/httpd/my-drupal my_drupal loc http://my-drupal.loc

123

https://www.drupal.org/docs/7/install
http://my-drupal.loc

devilbox Documentation

26.2 Walk through

It will be ready in six simple steps:

1. Enter the PHP container

2. Create a new VirtualHost directory

3. Install Drupal via drush

4. Symlink webroot directory

5. Setup DNS record

6. Visit http://my-drupal.loc in your browser

See also:

Available tools

26.2.1 1. Enter the PHP container

host> ./shell.sh

See also:

Work inside the container

26.2.2 2. Create new vhost directory

devilbox@php-7.0.20 in /shared/httpd $ mkdir my-drupal

26.2.3 3. Install Drupal

devilbox@php-7.0.20 in /shared/httpd $ cd my-drupal
devilbox@php-7.0.20 in /shared/httpd/my-drupal $ drush dl drupal

26.2.4 4. Symlink webroot

devilbox@php-7.0.20 in /shared/httpd/my-drupal $ ln -s drupal-8.3.3/ htdocs

26.2.5 5. DNS record

If you do not have Auto-DNS configured, you will need to add the following line to your host operating systems
/etc/hosts file (or C:\Windows\System32\drivers\etc on Windows):

Listing 1: /etc/hosts

127.0.0.1 my-drupal.loc

See also:

For in-depth info about adding DNS records on Linux, Windows or MacOS see: DNS records or Auto-DNS.

124 Chapter 26. Setup Drupal

http://my-drupal.loc

devilbox Documentation

26.2.6 6. Open your browser

Open your browser at http://my-drupal.loc and follow the Drupal installation steps.

Note: When asked about MySQL hostname, choose 127.0.0.1.

26.2. Walk through 125

http://my-drupal.loc

devilbox Documentation

126 Chapter 26. Setup Drupal

CHAPTER 27

Setup Joomla

This example will install Joomla from within the PHP container.

See also:

Official Joomla Documentation

Table of Contents

• Overview

• Walk through

– 1. Enter the PHP container

– 2. Create new vhost directory

– 3. Download and extract Joomla

– 4. Symlink webroot

– 5. DNS record

– 6. Open your browser

27.1 Overview

The following configuration will be used:

Project name VirtualHost directory Database TLD_SUFFIX Project URL
my-joomla /shared/httpd/my-joomla n.a. loc http://my-joomla.loc

127

https://docs.joomla.org/J3.x:Installing_Joomla
http://my-joomla.loc

devilbox Documentation

27.2 Walk through

It will be ready in six simple steps:

1. Enter the PHP container

2. Create a new VirtualHost directory

3. Download and extract Joomla

4. Symlink webroot directory

5. Setup DNS record

6. Visit http://my-joomla.loc in your browser

See also:

Available tools

27.2.1 1. Enter the PHP container

host> ./shell.sh

See also:

Work inside the container

27.2.2 2. Create new vhost directory

devilbox@php-7.0.20 in /shared/httpd $ mkdir my-joomla

27.2.3 3. Download and extract Joomla

devilbox@php-7.0.20 in /shared/httpd $ cd my-joomla
devilbox@php-7.0.20 in /shared/httpd/my-joomla $ wget -O joomla.tar.gz https://
→˓downloads.joomla.org/cms/joomla3/3-8-0/joomla_3-8-0-stable-full_package-tar-gz?
→˓format=gz
devilbox@php-7.0.20 in /shared/httpd $ mkdir joomla
devilbox@php-7.0.20 in /shared/httpd $ tar xvfz joomla.tar.gz -C joomla/

27.2.4 4. Symlink webroot

devilbox@php-7.0.20 in /shared/httpd/my-joomla $ ln -s joomla/ htdocs

27.2.5 5. DNS record

If you do not have Auto-DNS configured, you will need to add the following line to your host operating systems
/etc/hosts file (or C:\Windows\System32\drivers\etc on Windows):

128 Chapter 27. Setup Joomla

http://my-joomla.loc

devilbox Documentation

Listing 1: /etc/hosts

127.0.0.1 my-joomla.loc

See also:

For in-depth info about adding DNS records on Linux, Windows or MacOS see: DNS records or Auto-DNS.

27.2.6 6. Open your browser

Open your browser at http://my-joomla.loc

27.2. Walk through 129

http://my-joomla.loc

devilbox Documentation

130 Chapter 27. Setup Joomla

CHAPTER 28

Setup Laravel

This example will use laravel to install Laravel from within the PHP container.

See also:

Official Laravel Documentation

Table of Contents

• Overview

• Walk through

– 1. Enter the PHP container

– 2. Create new vhost directory

– 3. Install Laravel

– 4. Symlink webroot

– 5. DNS record

– 6. Open your browser

28.1 Overview

The following configuration will be used:

Project name VirtualHost directory Database TLD_SUFFIX Project URL
my-laravel /shared/httpd/my-laravel n.a. loc http://my-laravel.loc

131

https://laravel.com/docs/5.4/installation
http://my-laravel.loc

devilbox Documentation

28.2 Walk through

It will be ready in six simple steps:

1. Enter the PHP container

2. Create a new VirtualHost directory

3. Install Laravel

4. Symlink webroot directory

5. Setup DNS record

6. Visit http://my-laravel.loc in your browser

See also:

Available tools

28.2.1 1. Enter the PHP container

host> ./shell.sh

See also:

Work inside the container

28.2.2 2. Create new vhost directory

devilbox@php-7.0.20 in /shared/httpd $ mkdir my-laravel

28.2.3 3. Install Laravel

devilbox@php-7.0.20 in /shared/httpd $ cd my-laravel
devilbox@php-7.0.20 in /shared/httpd/my-laravel $ laravel new laravel-project

28.2.4 4. Symlink webroot

devilbox@php-7.0.20 in /shared/httpd/my-laravel $ ln -s laravel-project/public/ htdocs

28.2.5 5. DNS record

If you do not have Auto-DNS configured, you will need to add the following line to your host operating systems
/etc/hosts file (or C:\Windows\System32\drivers\etc on Windows):

Listing 1: /etc/hosts

127.0.0.1 my-laravel.loc

See also:

For in-depth info about adding DNS records on Linux, Windows or MacOS see: DNS records or Auto-DNS.

132 Chapter 28. Setup Laravel

http://my-laravel.loc

devilbox Documentation

28.2.6 6. Open your browser

Open your browser at http://my-laravel.loc

28.2. Walk through 133

http://my-laravel.loc

devilbox Documentation

134 Chapter 28. Setup Laravel

CHAPTER 29

Setup Phalcon

This example will use phalcon to install Phalcon from within the PHP container.

See also:

Official Phalcon Documentation

Table of Contents

• Overview

• Walk through

– 1. Enter the PHP container

– 2. Create new vhost directory

– 3. Install Phalcon

– 4. Symlink webroot

– 5. DNS record

– 6. Open your browser

29.1 Overview

The following configuration will be used:

Project name VirtualHost directory Database TLD_SUFFIX Project URL
my-phalcon /shared/httpd/my-phalcon n.a. loc http://my-phalcon.loc

135

https://docs.phalconphp.com/en/3.2/devtools-usage
http://my-phalcon.loc

devilbox Documentation

29.2 Walk through

It will be ready in six simple steps:

1. Enter the PHP container

2. Create a new VirtualHost directory

3. Install Phalcon

4. Symlink webroot directory

5. Setup DNS record

6. Visit http://my-phalcon.loc in your browser

See also:

Available tools

29.2.1 1. Enter the PHP container

host> ./shell.sh

See also:

Work inside the container

29.2.2 2. Create new vhost directory

devilbox@php-7.0.20 in /shared/httpd $ mkdir my-phalcon

29.2.3 3. Install Phalcon

devilbox@php-7.0.20 in /shared/httpd $ cd my-phalcon
devilbox@php-7.0.20 in /shared/httpd/my-phalcon $ phalcon project phalconphp

29.2.4 4. Symlink webroot

devilbox@php-7.0.20 in /shared/httpd/my-pahlcon $ ln -s phalconphp/public/ htdocs

29.2.5 5. DNS record

If you do not have Auto-DNS configured, you will need to add the following line to your host operating systems
/etc/hosts file (or C:\Windows\System32\drivers\etc on Windows):

Listing 1: /etc/hosts

127.0.0.1 my-phalcon.loc

See also:

For in-depth info about adding DNS records on Linux, Windows or MacOS see: DNS records or Auto-DNS.

136 Chapter 29. Setup Phalcon

http://my-phalcon.loc

devilbox Documentation

29.2.6 6. Open your browser

Open your browser at http://my-phalcon.loc

29.2. Walk through 137

http://my-phalcon.loc

devilbox Documentation

138 Chapter 29. Setup Phalcon

CHAPTER 30

Setup Symfony

This example will use symfony to install Symfony from within the PHP container.

See also:

Official Symfony Documentation

Table of Contents

• Overview

• Walk through

– 1. Enter the PHP container

– 2. Create new vhost directory

– 3. Install Symfony

– 4. Symlink webroot

– 5. Enable Symfony prod (app.php)

– 6. DNS record

– 7. Open your browser

30.1 Overview

The following configuration will be used:

Project name VirtualHost directory Database TLD_SUFFIX Project URL
my-symfony /shared/httpd/my-symfony n.a. loc http://my-symfony.loc

139

https://symfony.com/doc/current/setup.html
http://my-symfony.loc

devilbox Documentation

30.2 Walk through

It will be ready in seven simple steps:

1. Enter the PHP container

2. Create a new VirtualHost directory

3. Install Symfony

4. Symlink webroot directory

5. Enable Symfony prod (app.php)

6. Setup DNS record

7. Visit http://my-symfony.loc in your browser

See also:

Available tools

30.2.1 1. Enter the PHP container

host> ./shell.sh

See also:

Work inside the container

30.2.2 2. Create new vhost directory

devilbox@php-7.0.20 in /shared/httpd $ mkdir my-symfony

30.2.3 3. Install Symfony

devilbox@php-7.0.20 in /shared/httpd $ cd my-symfony
devilbox@php-7.0.20 in /shared/httpd/my-symfony $ symfony new symfony

30.2.4 4. Symlink webroot

devilbox@php-7.0.20 in /shared/httpd/my-symfony $ ln -s symfony/web/ htdocs

30.2.5 5. Enable Symfony prod (app.php)

devilbox@php-7.0.20 in /shared/httpd/my-symfony $ cd symfony/web
devilbox@php-7.0.20 in /shared/httpd/my-symfony/symfony/web $ ln -s app.php index.php

140 Chapter 30. Setup Symfony

http://my-symfony.loc

devilbox Documentation

30.2.6 6. DNS record

If you do not have Auto-DNS configured, you will need to add the following line to your host operating systems
/etc/hosts file (or C:\Windows\System32\drivers\etc on Windows):

Listing 1: /etc/hosts

127.0.0.1 my-symfony.loc

See also:

For in-depth info about adding DNS records on Linux, Windows or MacOS see: DNS records or Auto-DNS.

30.2.7 7. Open your browser

Open your browser at http://my-symfony.loc

30.2. Walk through 141

http://my-symfony.loc

devilbox Documentation

142 Chapter 30. Setup Symfony

CHAPTER 31

Setup Wordpress

This example will use git to install Wordpress from within the PHP container.

See also:

Official Wordpress Documentation

Table of Contents

• Overview

• Walk through

– 1. Enter the PHP container

– 2. Create new vhost directory

– 3. Download Wordpress via git

– 4. Symlink webroot

– 5. DNS record

– 6. Open your browser

31.1 Overview

The following configuration will be used:

Project name VirtualHost directory Database TLD_SUFFIX Project URL
my-wp /shared/httpd/my-wp my_wp loc http://my-wp.loc

143

https://codex.wordpress.org/Installing_WordPress
http://my-wp.loc

devilbox Documentation

31.2 Walk through

It will be ready in six simple steps:

1. Enter the PHP container

2. Create a new VirtualHost directory

3. Download Wordpress via git

4. Symlink webroot directory

5. Setup DNS record

6. Visit http://my-wp.loc in your browser

See also:

Available tools

31.2.1 1. Enter the PHP container

host> ./shell.sh

See also:

Work inside the container

31.2.2 2. Create new vhost directory

devilbox@php-7.0.20 in /shared/httpd $ mkdir my-wp

31.2.3 3. Download Wordpress via git

devilbox@php-7.0.20 in /shared/httpd $ cd my-wp
devilbox@php-7.0.20 in /shared/httpd/my-wp $ git clone https://github.com/WordPress/
→˓WordPress wordpress.git

31.2.4 4. Symlink webroot

devilbox@php-7.0.20 in /shared/httpd/my-wp $ ln -s wordpress.git/ htdocs

31.2.5 5. DNS record

If you do not have Auto-DNS configured, you will need to add the following line to your host operating systems
/etc/hosts file (or C:\Windows\System32\drivers\etc on Windows):

144 Chapter 31. Setup Wordpress

http://my-wp.loc

devilbox Documentation

Listing 1: /etc/hosts

127.0.0.1 my-wp.loc

See also:

For in-depth info about adding DNS records on Linux, Windows or MacOS see: DNS records or Auto-DNS.

31.2.6 6. Open your browser

Open your browser at http://my-wp.loc

31.2. Walk through 145

http://my-wp.loc

devilbox Documentation

146 Chapter 31. Setup Wordpress

CHAPTER 32

Setup Yii

This example will use composer to install Yii from within the PHP container.

See also:

Official Yii Documentation

Table of Contents

• Overview

• Walk through

– 1. Enter the PHP container

– 2. Create new vhost directory

– 3. Install Yii2 via composer

– 4. Symlink webroot

– 5. DNS record

– 6. Open your browser

32.1 Overview

The following configuration will be used:

Project name VirtualHost directory Database TLD_SUFFIX Project URL
my-yii /shared/httpd/my-yii n.a. loc http://my-yii.loc

147

http://www.yiiframework.com/doc-2.0/guide-start-installation.html
http://my-yii.loc

devilbox Documentation

32.2 Walk through

It will be ready in six simple steps:

1. Enter the PHP container

2. Create a new VirtualHost directory

3. Install Yii2 via composer

4. Symlink webroot directory

5. Setup DNS record

6. Visit http://my-wp.loc in your browser

See also:

Available tools

32.2.1 1. Enter the PHP container

host> ./shell.sh

See also:

Work inside the container

32.2.2 2. Create new vhost directory

devilbox@php-7.0.20 in /shared/httpd $ mkdir my-yii

32.2.3 3. Install Yii2 via composer

devilbox@php-7.0.20 in /shared/httpd $ cd my-yii
devilbox@php-7.0.20 in /shared/httpd/my-yii $ composer create-project --prefer-dist --
→˓stability=dev yiisoft/yii2-app-basic yii2-dev

32.2.4 4. Symlink webroot

devilbox@php-7.0.20 in /shared/httpd/my-yii $ ln -s yii2-dev/web/ htdocs

32.2.5 5. DNS record

If you do not have Auto-DNS configured, you will need to add the following line to your host operating systems
/etc/hosts file (or C:\Windows\System32\drivers\etc on Windows):

148 Chapter 32. Setup Yii

http://my-wp.loc

devilbox Documentation

Listing 1: /etc/hosts

127.0.0.1 my-yii.loc

See also:

For in-depth info about adding DNS records on Linux, Windows or MacOS see: DNS records or Auto-DNS.

32.2.6 6. Open your browser

Open your browser at http://my-yii.loc

32.2. Walk through 149

http://my-yii.loc

devilbox Documentation

150 Chapter 32. Setup Yii

CHAPTER 33

Setup Zend

This example will use composer to install Zend from within the PHP container.

See also:

Official Zend Documentation

Table of Contents

• Overview

• Walk through

– 1. Enter the PHP container

– 2. Create new vhost directory

– 3. Install Zend via composer

– 4. Symlink webroot

– 5. DNS record

– 6. Open your browser

33.1 Overview

The following configuration will be used:

Project name VirtualHost directory Database TLD_SUFFIX Project URL
my-zend /shared/httpd/my-zend n.a. loc http://my-zend.loc

151

https://docs.zendframework.com/tutorials/getting-started/skeleton-application/
http://my-zend.loc

devilbox Documentation

33.2 Walk through

It will be ready in six simple steps:

1. Enter the PHP container

2. Create a new VirtualHost directory

3. Install Zend via composer

4. Symlink webroot directory

5. Setup DNS record

6. Visit http://my-wp.loc in your browser

See also:

Available tools

33.2.1 1. Enter the PHP container

host> ./shell.sh

See also:

Work inside the container

33.2.2 2. Create new vhost directory

devilbox@php-7.0.20 in /shared/httpd $ mkdir my-zend

33.2.3 3. Install Zend via composer

devilbox@php-7.0.20 in /shared/httpd $ cd my-zend
devilbox@php-7.0.20 in /shared/httpd/my-zend $ composer create-project --prefer-dist
→˓zendframework/skeleton-application zend

33.2.4 4. Symlink webroot

devilbox@php-7.0.20 in /shared/httpd/my-zend $ ln -s zend/public/ htdocs

33.2.5 5. DNS record

If you do not have Auto-DNS configured, you will need to add the following line to your host operating systems
/etc/hosts file (or C:\Windows\System32\drivers\etc on Windows):

152 Chapter 33. Setup Zend

http://my-wp.loc

devilbox Documentation

Listing 1: /etc/hosts

127.0.0.1 my-zend.loc

See also:

For in-depth info about adding DNS records on Linux, Windows or MacOS see: DNS records or Auto-DNS.

33.2.6 6. Open your browser

Open your browser at http://my-zend.loc

33.2. Walk through 153

http://my-zend.loc

devilbox Documentation

154 Chapter 33. Setup Zend

CHAPTER 34

DNS records

Project DNS records are required, because each project is using its own virtual host with its own unique server name.

The server name is constructed by a <project-directory> and the TLD_SUFFIX and requires the same DNS
record to be present in order to access it.

See also:

This section gives you an overview about how to create separate DNS records for each project. It has to be done for
each project, however if you want to automate the process, refer to Auto-DNS.

Table of Contents

• Examples

• Creating DNS records

– Native Docker

* Linux

* MacOS

* Windows

– Docker Toolbox

* MacOS

* Windows

• Verify

155

devilbox Documentation

34.1 Examples

In order to better illustrate the process, we are going to use two projects as an example. See the following table for
project directories and TLD_SUFFIX.

Project directory TLD_SUFFIX Project URL Required DNS name
project-1 loc http://project-1.loc project-1.loc
www.project-1 loc http://www.project-1.loc www.project-1.loc

Note: When you have created the above two projects, you can check the vhost page on the Devilbox intranet. It will
tell you exactly what DNS record to add.

Important: The IP address 127.0.0.1 is different for Docker Toolbox

34.2 Creating DNS records

When creating DNS records for your host operating system, there are two distinctions to be made. If you use Native
Docker (the default and recommended Docker), you can always use 127.0.0.1 as your IP address for the DNS
record. If however your use Docker Toolbox, you first need to find out the IP address of the Docker Toolbox virtual
machine.

See also:

Docker Toolbox

34.2.1 Native Docker

Linux

Use your favorite editor and open /etc/hosts with root privileges. The following example uses vim to add the two
example DNS records.

156 Chapter 34. DNS records

http://project-1.loc
http://www.project-1.loc

devilbox Documentation

host> sudo vim /etc/hosts

127.0.0.1 project-1.loc
127.0.0.1 www.project-1.loc

MacOS

Use your favorite editor and open /etc/hosts with root privileges. The following example uses vim to add the two
example DNS records.

host> sudo vim /etc/hosts

127.0.0.1 project-1.loc
127.0.0.1 www.project-1.loc

Windows

On Windows you need to open C:\Windows\System32\drivers\etc with administrative privileges and add
the following two lines:

127.0.0.1 project-1.loc
127.0.0.1 www.project-1.loc

34.2.2 Docker Toolbox

When using Docker Toolbox the Devilbox runs inside a virtual machine and therefore the webserver port (80) is not
exposed to your host operating system. So your DNS record must point to the virtual machine instead of your host
system.

1. Find out the IP address the virtual machine is running on

2. Add a DNS entry to your host operating system for this IP address.

For the sake of this example, let’s assume the virtual machine is running on 192.16.0.1

MacOS

Use your favorite editor and open /etc/hosts with root privileges. The following example uses vim to add the two
example DNS records.

host> sudo vim /etc/hosts

192.16.0.1 project-1.loc
192.16.0.1 www.project-1.loc

Windows

On Windows you need to open C:\Windows\System32\drivers\etc with administrative privileges and add
the following two lines:

34.2. Creating DNS records 157

devilbox Documentation

192.16.0.1 project-1.loc
192.16.0.1 www.project-1.loc

34.3 Verify

After settings the DNS records, you can use the ping command to verify if everything works.

host> ping -c1 project-1.loc

PING project-1.loc (127.0.0.1) 56(84) bytes of data.
64 bytes from localhost (127.0.0.1): icmp_seq=1 ttl=64 time=0.066 ms

host> ping -c1 www.project-1.loc

PING www.project-1.loc (127.0.0.1) 56(84) bytes of data.
64 bytes from localhost (127.0.0.1): icmp_seq=1 ttl=64 time=0.066 ms

158 Chapter 34. DNS records

CHAPTER 35

Customized virtual host (vhost-gen)

Table of Contents

• vhost-gen

– What is vhost-gen

– Where do I find templates

– How does it work

– How to apply templates to a specific project

* 1. Retrieve or set template directory value

* 2. Copy webserver template to project template directory

* 3. Adjust template

* 4. Make Devilbox pick up those changes

• Templates explained

– Ensure yaml files are valid

– Template variables

* Global variables

* vHost type variable

* Feature variables

– Template structure

* 1. vhost:

* 2. vhost_type:

* 3. features:

159

devilbox Documentation

• Apply Changes

– Rename project directory

– Restart the Devilbox

• Further readings

35.1 vhost-gen

35.1.1 What is vhost-gen

vhost-gen is a python script which is able to dynamically generate Apache 2.2, Apache 2.4 and Nginx virtual host
or reverse proxy configuration files.

It is intended to be used by other means of automation such as change of directories or change of listening ports.

See also:

If you intend to use vhost-gen for your own projects, have a look at its projcet page and its sister projects:

• vhost-gen

• watcherd

• watcherp

35.1.2 Where do I find templates

The latest version of vhost-gen templates are shipped in the Devilbox git directory under templates/vhost-gen.
You can however also download them directly from its own git directory.

See also:

https://github.com/devilbox/vhost-gen/tree/master/etc/templates.

35.1.3 How does it work

By default new virtual hosts are automatically generated and enabled by vhost-gen and watcherp using the vanilla
templates which are glued into the webserver Docker images. The used templates are exactly the same as what you
will find in templates/vhost-gen.

This ensures to have equal and sane default virtual host for all of your projects. If you want to have a different virtual
host configuration for a specific project of yours, you can copy a corresponding template into your project directory
and adjust it to your needs.

35.1.4 How to apply templates to a specific project

Customizing a virtual host via vhost-gen template is generally done in four steps:

1. Retrieve or set template directory value in .env.

2. Copy webserver template to project template directory

3. Adjust template

160 Chapter 35. Customized virtual host (vhost-gen)

https://github.com/devilbox/vhost-gen
https://github.com/devilbox/watcherd
https://github.com/devilbox/watcherp
https://github.com/devilbox/vhost-gen/tree/master/etc/templates

devilbox Documentation

4. Make Devilbox pick up those changes

Let’s assume the following default values and one project named project-1:

Variable Value
Devilbox path /home/user/devilbox
Templates to copy from /home/user/devilbox/templates/vhost-gen
Project name project-1
HTTPD_TEMPLATE_DIR .devilbox (default value)
HOST_PATH_HTTPD_DATADIR ./data/www (default value)

Those assumed settings will result in the following directory paths which must be created by you:

What Path
Project directory path /home/user/devilbox/data/www/project-1/
Project template path /home/user/devilbox/data/www/project-1/.devilbox/

1. Retrieve or set template directory value

By default the HTTPD_TEMPLATE_DIR value is .devilbox. This is defined in the .env file. Feel free to change
it to whatever directory name you prefer, but keep in mind that it will change the Project template path which you
need to create yourself.

For this example we will keep the default value for the sake of simplicity: .devilxbox.

Note: The HTTPD_TEMPLATE_DIR value is a global setting and will affect all projects.

2. Copy webserver template to project template directory

First you need to ensure that the HTTPD_TEMPLATE_DIR exists wihin you project.

Navigate to the Devilbox directory
host> cd /home/user/devilbox

Create template directory in your project
host> mkdir ./data/www/project-1/.devilbox

Then you can copy the templates.

host> cp templates/vhost-gen/* ./data/www/project-1/.devilbox

Note: You actually only need to copy the template of your chosen webserver (either Apache 2.2, Apache 2.4 or
Nginx), however it is good practice to copy all templates and also adjust all templates synchronously. This allows you
to change web server versions and still keep your virtual host settings.

3. Adjust template

At this stage you can start adjusting the template. Either do that for the webserver version you have en-
abled via HTTPD_SERVER: /home/user/devilbox/data/www/project-1/.devilbox/apache22.

35.1. vhost-gen 161

devilbox Documentation

yml. /home/user/devilbox/data/www/project-1/.devilbox/apache24.yml, /home/user/
devilbox/data/www/project-1/.devilbox/nginx.yml or do it for all of them synchronously.

Note: What exactly to change will be explained later.

4. Make Devilbox pick up those changes

Whenever you change a project vhost template or the HTTPD_TEMPLATE_DIR value, you need to restart the Devil-
box.

Note: It is also possible to do it without a restart which will be explained later.

35.2 Templates explained

Before the templates are explained, have a look at the following table to find out what template needs to be in place
for what webserver version.

Webserver Template
Apache 2.2 apache22.yml
Apache 2.4 apache22.yml
Nginx stable nginx.yml
Nginx mainline nginx.yml

Note: Nginx stable and mainline share the same template as their syntax has no special differences, whereas Apache
2.2 and Apache 2.4 have slight differences in syntax and therefore require two different templates.

35.2.1 Ensure yaml files are valid

Warning: Pay close attention that you do not use TAB (\t) characters for indenting the vhost-gen yaml files.
Some editors might automatically indent using TABs, so ensure they are replaced with spaces. If TAB characters
are present, those files become invalid and won’t work. https://github.com/cytopia/devilbox/issues/142

You can use the bundled yamllint binary inside the container to validate your config.

Navigate to the Devilbox directory
host> cd /home/user/devilbox

Enter the PHP container
host> ./shell.sh

Go to your project's template directory
devilbox@php-7.0.19 in /shared/httpd $ cd project-1/.devilbox

(continues on next page)

162 Chapter 35. Customized virtual host (vhost-gen)

https://github.com/cytopia/devilbox/issues/142

devilbox Documentation

(continued from previous page)

Check the syntax of apache22.yml
devilbox@php-7.0.19 in /shared/httpd/project-1/.devilbox $ yamllint apache22.yml

108:81 error line too long (90 > 80 characters) (line-length)
139:81 error line too long (100 > 80 characters) (line-length)
140:81 error line too long (84 > 80 characters) (line-length)
142:81 error line too long (137 > 80 characters) (line-length)

Long line errors can safely be ignored.

35.2.2 Template variables

Every uppercase string which begins with __ and ends by __ (such as __PORT__) is a variable that will be replaced
by a value. Variables can contain a string, a multi-line string or can also be replaced to an empty value.

Global variables

There are global variables that are determined by the command line arguments of vhost-gen itself or are elsewhere
replaced by the Devilbox webserver container such as:

• __PORT__

• __DEFAULT_VHOST__

• __VHOST_NAME__

• __ACCESS_LOG__

• __ERROR_LOG__

vHost type variable

There are also two variables that will be replaced according to the type of the vhost - either a normal vhost or a reverse
proxy vhost.

• __VHOST_DOCROOT__

• __VHOST_PROXY__

The Devilbox always uses a normal vhost by default, so the __VHOST_DOCROOT__ variable will be replaced
by what the vhost_type.docroot section provides. The vhost_type.rproxy will be ignored and
__VHOST_PROXY__ will be replaced by an empty string.

Feature variables

All other variables will be replaced by what is provided in the features: section. All subsections of features:
have corresponding variables in the following form:

Feature directive Variable name pattern
lower_case: __UPPER_CASE__

As an example, the contents of the features.php_fpm: section will be replaced into the __PHP_FPM__ vari-
able.

35.2. Templates explained 163

devilbox Documentation

35.2.3 Template structure

Each vhost-gen template has three main yaml directives:

1. vhost:

2. vhost_type:

3. features:

1. vhost:

The vhost: directive will contain the final resulting virtual host configuration that will be applied by the webserver.
Each of its containing variables will be substituted and its content will be copied to a webserver configuration file.

By default the vhost: section has variables from global scope, from the vhost_type: section and from the
features: section.

You can also fully hard-code your webserver configuration without any variables. This way you can specify a fully
self-brewed webserver configuration. An example for Apache 2.2 could look like this:

vhost: |
<VirtualHost *:80>

ServerName example.com

CustomLog "/var/log/apache/access.log" combined
ErrorLog "/var/log/apache/error.log"

DocumentRoot "/shared/httpd/project-1/htdocs"
<Directory "/shared/httpd/project-1/htdocs">

DirectoryIndex index.php

AllowOverride All
Options All

RewriteEngine on
RewriteBase /

Order allow,deny
Allow from all

</Directory>

ProxyPassMatch ^/(.*\.php(/.*)?)$ fcgi://127.0.0.1:9000/shared/httpd/project-1/
→˓htdocs/$1
</VirtualHost>

2. vhost_type:

The vhost_type: contains docroot and rproxy. The Devilbox only makes use of docroot which holds the
definition of a normal vhost. Its content will be replaced into the __VHOST_DOCROOT__ variable.

The rproxy section will be ignored and the __VHOST_RPROXY__ variable will contain an empty value.

vHost Type section Variable to be replaced into
docroot: __VHOST_DOCROOT__
rproxy: __VHOST_RPROXY__ (empty)

164 Chapter 35. Customized virtual host (vhost-gen)

devilbox Documentation

3. features:

This section contains directives that will all be replaced into vhost: variables.

Feature section Variable to be replaced into
php_fpm: __PHP_FPM__
alias: __ALIASES__
deny: __DENIES__
server_status: __SERVER_STATUS__
xdomain_request: __XDOMAIN_REQ__

35.3 Apply Changes

After having edited your vhost-gen template files, you still need to apply these changes. This can be achieved in two
ways:

1. Rename your project directory back and forth

2. Restart the Devilbox

35.3.1 Rename project directory

Navigate to the data directory
host> /home/user/devilbox/data/www

Rename your project to something else
host> mv project-1 project-1.tmp

Rename your project to its original name
host> mv project-1.tmp project-1

If you want to understand what is going on right now, check the docker logs for the web server.

Navigate to the devilbox directory
host> /home/user/devilbox

Check docker logs
host> docker-compose logs httpd

httpd_1 | vhostgen: [2018-03-18 11:46:52] Adding: project-1.tmp.loc
httpd_1 | watcherd: [2018-03-18 11:46:52] [OK] ADD: succeeded: /shared/httpd/
→˓project-1.tmp
httpd_1 | watcherd: [2018-03-18 11:46:52] [OK] DEL: succeeded: /shared/httpd/
→˓project-1
httpd_1 | watcherd: [2018-03-18 11:46:52] [OK] TRIGGER succeeded: /usr/local/
→˓apache2/bin/httpd -k restart

httpd_1 | vhostgen: [2018-03-18 11:46:52] Adding: project-1loc
httpd_1 | watcherd: [2018-03-18 11:46:52] [OK] ADD: succeeded: /shared/httpd/
→˓project-1
httpd_1 | watcherd: [2018-03-18 11:46:52] [OK] DEL: succeeded: /shared/httpd/
→˓project-1.tmp
httpd_1 | watcherd: [2018-03-18 11:46:52] [OK] TRIGGER succeeded: /usr/local/
→˓apache2/bin/httpd -k restart

35.3. Apply Changes 165

devilbox Documentation

What happened?

The directory changes have been noticed and a new virtual host has been created. This time however your new vhost-
gen template has been read and the changes have applied.

Note: Renaming a project directory will only affect a single project. In case your change the value of
HTTPD_TEMPLATE_DIR it will affect all projects and you would have to rename all project directories. In this
case it is much faster to just restart the Devilbox.

35.3.2 Restart the Devilbox

Stop the Devilbox and start it up again.

35.4 Further readings

See also:

Have a look at the following examples which involve customizing vhost-gen templates:

• Adding Sub domains

166 Chapter 35. Customized virtual host (vhost-gen)

CHAPTER 36

HTTPS (SSL)

This page shows you how to use the Devilbox on https and how to import the Certificate Authority into your browser
once, so that you always and automatically get valid SSL certificates for all new projects.

SSL certificates are generated automatically and there is nothing to do from your side.

Table of Contents

• TL;DR

• How does it work

– Certificate Authority

– SSL Certificates

• Import the CA into your browser

– Chrome / Chromium

– Firefox

• Further Reading

36.1 TL;DR

Import the Certificate Authority into your browser and you are all set.

167

devilbox Documentation

36.2 How does it work

36.2.1 Certificate Authority

When the Devilbox starts up for the first time, it will generate a Certificate Authority and will store its public and
private key in ./ca/ within the Devilbox git directory.

The keys are only generated if they don’t exist and kept permanently if you don’t delete them manually, i.e. they are
not overwritten.

host> cd path/to/devilbox
host> ls -l ca/
-rw-r--r-- 1 cytopia cytopia 1558 May 2 11:12 devilbox-ca.crt
-rw------- 1 cytopia cytopia 1675 May 2 11:12 devilbox-ca.key
-rw-r--r-- 1 cytopia cytopia 17 May 4 08:35 devilbox-ca.srl

36.2.2 SSL Certificates

Whenever you create a new project directory, multiple things happen in the background:

1. A new virtual host is created

2. DNS is provided via Auto-DNS

3. A new SSL certificate is generated for that vhost

4. The SSL certificate is signed by the Devilbox Certificate Authority

By having a SSL certificates signed by the provided CA, you will only have to import the CA into your browser
ones and all current projects and future projects will automatically have valid and trusted SSL certificates without any
further work.

Important: Importing the CA into the browser is also recommended and required for the Devilbox intranet page to
work properly.

36.3 Import the CA into your browser

36.3.1 Chrome / Chromium

Open Chrome settings, scroll down to the very bottom and click on Advanced to expand the advanced settings.

168 Chapter 36. HTTPS (SSL)

https://en.wikipedia.org/wiki/Certificate_authority

devilbox Documentation

Find the setting Manage certificates and open it.

36.3. Import the CA into your browser 169

devilbox Documentation

Navigate to the tab setting AUTHORITIES and click on IMPORT.

Select devilbox-ca.crt from within the Devilbox ./ca directory:

170 Chapter 36. HTTPS (SSL)

devilbox Documentation

As the last step you are asked what permissions you want to grant the newly importat CA. To make sure it works
everywhere, check all options and proceed with OK.

36.3. Import the CA into your browser 171

devilbox Documentation

Now you are all set and all generated SSL certificates will be valid from now on.

36.3.2 Firefox

Open Firefox settings and click on Privacy & Security.

At the very bottom click on the button View Certificates.

172 Chapter 36. HTTPS (SSL)

devilbox Documentation

In the Authories tab, click on Import.

36.3. Import the CA into your browser 173

devilbox Documentation

Select devilbox-ca.crt from within the Devilbox ./ca directory:

As the last step you are asked what permissions you want to grant the newly importat CA. To make sure it works
everywhere, check all options and proceed with OK.

174 Chapter 36. HTTPS (SSL)

devilbox Documentation

Now you are all set and all generated SSL certificates will be valid from now on.

36.4 Further Reading

See also:

.env variable: DEVILBOX_UI_SSL_CN

36.4. Further Reading 175

devilbox Documentation

176 Chapter 36. HTTPS (SSL)

CHAPTER 37

Web server

This page lists a general overview about the bundled web server - its features, where it comes from, how it is built and
what configuration is possible.

Table of Contents

• Features

– Auto-virtual hosts

– File permission problem

– Custom global configuration

– Custom vhost configuration

• Information

– Dockerfile

– Github

– Dockerhub

– Build process

• Configuration

– .env file

– apache.conf / nginx.conf

– vhost-gen

177

devilbox Documentation

37.1 Features

37.1.1 Auto-virtual hosts

37.1.2 File permission problem

37.1.3 Custom global configuration

37.1.4 Custom vhost configuration

37.2 Information

37.2.1 Dockerfile

37.2.2 Github

37.2.3 Dockerhub

37.2.4 Build process

37.3 Configuration

37.3.1 .env file

37.3.2 apache.conf / nginx.conf

37.3.3 vhost-gen

178 Chapter 37. Web server

CHAPTER 38

PHP

Environment variables

179

devilbox Documentation

180 Chapter 38. PHP

CHAPTER 39

MySQL

181

devilbox Documentation

182 Chapter 39. MySQL

CHAPTER 40

MongoDB

183

devilbox Documentation

184 Chapter 40. MongoDB

CHAPTER 41

Redis

185

devilbox Documentation

186 Chapter 41. Redis

CHAPTER 42

Memcached

187

devilbox Documentation

188 Chapter 42. Memcached

CHAPTER 43

BIND

189

devilbox Documentation

190 Chapter 43. BIND

CHAPTER 44

Devilbox Intranet

191

devilbox Documentation

192 Chapter 44. Devilbox Intranet

CHAPTER 45

Auto-DNS

If you don’t want to add DNS records manually for every project, you can also use the bundled DNS server and use
it’s DNS catch-all feature to have all DNS records automatically available.

Important: By default, the DNS server is set to listen on 1053 to avoid port collisions during startup. You need to
change it to 53 in .env via HOST_PORT_BIND.

Table of Contents

• Native Docker

– Prerequisites

– Linux

– MacOS

– Windows

• Docker Toolbox

– MacOS

– Windows

45.1 Native Docker

The webserver as well as the DNS server must be available on 127.0.0.1 or on all interfaces on 0.0.0.0. Addi-
tionally the DNS server port must be set to 53 (it is not by default).

• Ensure LOCAL_LISTEN_ADDR is set accordingly

• Ensure HOST_PORT_BIND is set accordingly

193

devilbox Documentation

• No other DNS resolver should listen on 127.0.0.1:53

45.1.1 Prerequisites

First ensure that LOCAL_LISTEN_ADDR is either empty or listening on 127.0.0.1.

Listing 1: .env

host> cd path/to/devilbox
host> vi .env
LOCAL_LISTEN_ADDR=

Then you need to ensure that HOST_PORT_BIND is set to 53.

Listing 2: .env

host> cd path/to/devilbox
host> vi .env
HOST_PORT_BIND=53

Before starting up the Devilbox, ensure that port 53 is not already used on 127.0.0.1.

host> netstat -an | grep -E 'LISTEN\s*$'
tcp 0 0 127.0.0.1:53 0.0.0.0:* LISTEN
tcp 0 0 127.0.0.1:43477 0.0.0.0:* LISTEN
tcp 0 0 127.0.0.1:50267 0.0.0.0:* LISTEN

If you see port 53 already being used as in the above example, ensure to stop any DNS resolver, otherwise it does not
work.

The output should look like this (It is only important that there is no :53.

host> netstat -an | grep -E 'LISTEN\s*$'
tcp 0 0 127.0.0.1:43477 0.0.0.0:* LISTEN
tcp 0 0 127.0.0.1:50267 0.0.0.0:* LISTEN

45.1.2 Linux

If the prerequisites are met, you can edit /etc/dhcp/dhclient.conf with root or sudo privileges and add an
instruction, which tells your local DHCP client that whenever any of your DNS servers are changed, you always want
to have an additional entry, which is the one from the Devilbox.

Add the following line to to the very beginning to /etc/dhcp/dhclient.conf:

Listing 3: /etc/dhcp/dhclient.conf

prepend domain-name-servers 127.0.0.1;

When you do that for the first time, you need to restart the network-manager service.

Via service command
$ sudo service network-manager restart

Or the systemd way
$ sudo systemctl restart network-manager

194 Chapter 45. Auto-DNS

devilbox Documentation

This will make sure that whenever your /etc/resolv.conf is deployed, you will have 127.0.0.1 as the first entry and
also make use of any other DNS server which are deployed via the LAN’s DHCP server.

If the Devilbox DNS server is not running, it does not affect the name resolution, because you will still have other
entries in /etc/resolv.conf.

45.1.3 MacOS

Modifying /etc/resolv.conf does not work on MacOS, you need to make changes in your System Preferences:

1. Open System Preferences

2. Go to Network

3. Select your connected interface

4. Click on DNS tab

5. Add new DNS server by clicking the + sign

6. Add 127.0.0.1

45.1. Native Docker 195

devilbox Documentation

45.1.4 Windows

On Windows, you need to change your active network adapter. See the following screenshots for how to do it.

In the last screenshot, you will have to add 127.0.0.1 as your Preferred DNS server.

45.2 Docker Toolbox

See also:

Docker Toolbox

45.2.1 MacOS

• LOCAL_LISTEN_ADDR must be empty in order to listen on all interfaces

• HOST_PORT_BIND must be set to 53

• Port 80 from the Docker Toolbox virtual machine must be port-forwarded to 127.0.0.1:80 on your host os

• Port 53 from the Docker Toolbox virtual machine must be port-forwarded to 127.0.0.1:53 on your host os

196 Chapter 45. Auto-DNS

devilbox Documentation

Todo: This section needs further proof and information.

45.2.2 Windows

• LOCAL_LISTEN_ADDR must be empty in order to listen on all interfaces

• HOST_PORT_BIND must be set to 53

• Port 80 from the Docker Toolbox virtual machine must be port-forwarded to 127.0.0.1:80 on your host os

• Port 53 from the Docker Toolbox virtual machine must be port-forwarded to 127.0.0.1:53 on your host os

Todo: This section needs further proof and information.

45.2. Docker Toolbox 197

devilbox Documentation

198 Chapter 45. Auto-DNS

CHAPTER 46

.env file

All docker-compose configuration is done inside the .env file which simply defines key-value variables parsed to
docker-compose.yml.

Note: what is the .env file?

Note: Use your browsers search function to quickly find the desired variable name.

Important: Any change of .env requires a restart of the Devilbox.

Table of Contents

• Core settings

– DEBUG_COMPOSE_ENTRYPOINT

– DOCKER_LOGS

– DEVILBOX_PATH

– LOCAL_LISTEN_ADDR

– TLD_SUFFIX

– EXTRA_HOSTS

– NEW_UID

– NEW_GID

– TIMEZONE

199

https://docs.docker.com/compose/env-file/

devilbox Documentation

• Intranet settings

– DNS_CHECK_TIMEOUT

– DEVILBOX_UI_SSL_CN

– DEVILBOX_UI_PROTECT

– DEVILBOX_UI_PASSWORD

– DEVILBOX_UI_ENABLE

• Docker image versions

– PHP_SERVER

– HTTPD_SERVER

– MYSQL_SERVER

– PGSQL_SERVER

– REDIS_SERVER

– MEMCD_SERVER

– MONGO_SERVER

• Docker host mounts

– HOST_PATH_HTTPD_DATADIR

* Example

* Mapping

– HOST_PATH_MYSQL_DATADIR

– HOST_PATH_PGSQL_DATADIR

– HOST_PATH_MONGO_DATADIR

• Docker host ports

– HOST_PORT_HTTPD

– HOST_PORT_HTTPD_SSL

– HOST_PORT_MYSQL

– HOST_PORT_PGSQL

– HOST_PORT_REDIS

– HOST_PORT_MEMCD

– HOST_PORT_MONGO

– HOST_PORT_BIND

• Container settings

– PHP

* Custom variables

– Web server

* HTTPD_DOCROOT_DIR

200 Chapter 46. .env file

devilbox Documentation

* HTTPD_TEMPLATE_DIR

– MySQL

* MYSQL_ROOT_PASSWORD

* MYSQL_GENERAL_LOG

– PostgreSQL

* PGSQL_ROOT_USER

* PGSQL_ROOT_PASSWORD

– Bind

* BIND_DNS_RESOLVER

* BIND_DNSSEC_VALIDATE

* BIND_LOG_DNS

* BIND_TTL_TIME

* BIND_REFRESH_TIME

* BIND_RETRY_TIME

* BIND_EXPIRY_TIME

* BIND_MAX_CACHE_TIME

46.1 Core settings

46.1.1 DEBUG_COMPOSE_ENTRYPOINT

This variable controls the docker-compose log verbosity during service startup. When set to 1 verbose output as well
as executed commands are shown. When set to 0 only warnings and errors are shown.

Name Allowed values Default value
DEBUG_COMPOSE_ENTRYPOINT 0 or 1 1

46.1.2 DOCKER_LOGS

This variable controls the output of logs. Logs can either go to file and will be available under ./log/ inside the
Devilbox git directory or they can be forwarded to Docker logs and will then be send to stdout and stderr.

Name Allowed values Default value
DOCKER_LOGS 1 or 0 0

When DOCKER_LOGS is set to 1, output will go to Docker logs, otherwise if it is set to 0 the log output will go to
files under ./log/.

The ./log/ directory itself will contain subdirectories in the form <service>-<version> which will then hold
all available log files.

46.1. Core settings 201

devilbox Documentation

Note: Log directories do not exist until you start the Devilbox and will only be created for the service versions you
have enabled in .env.

The log directory structure would look something like this:

host> cd path/to/devilbox
host> tree log

log/
nginx-stable/

nginx-stable/
defaultlocalhost-access.log
defaultlocalhost-error.log
<project-name>-access.log # Each project has its own access log
<project-name>-error.log # Each project has its own error log

mariadb-10.1/
error.log
query.log
slow.log

php-fpm-7.1/
php-fpm.access
php-fpm.error

When you want to read logs sent to Docker logs, you can do so via the following command:

host> cd path/to/devilbox
host> docker-compose logs

When you want to continuously watch the log output (such as tail -f), you need to append -f to the command.

host> cd path/to/devilbox
host> docker-compose logs -f

When you only want to have logs displayed for a single service, you can also append the service name (works with or
without -f as well):

host> cd path/to/devilbox
host> docker-compose logs php -f

Important: Currently this is only implemented for PHP-FPM and HTTPD Docker container. MySQL will always
output its logs to file and all other official Docker container always output to Docker logs.

46.1.3 DEVILBOX_PATH

This specifies a relative or absolute path to the Devilbox git directory and will be used as a prefix for all Docker mount
paths.

• Relative path: relative to the devilbox git directory (Must start with .)

• Absolute path: Full path (Must start with /)

The only reason you would ever want change this variable is when you are on MacOS and relocate your project files
onto an NFS volume due to performance issues.

202 Chapter 46. .env file

devilbox Documentation

Warning:

Remove stopped container Whenever you change this value you have to stop the Devilbox and also remove the
stopped container via docker-compose rm.

Name Allowed values Default value
DEVILBOX_PATH valid path .

46.1.4 LOCAL_LISTEN_ADDR

This variable specifies you host computers listening IP address for exposed container ports. If you leave this variable
empty, all exposed ports will be bound to all network interfaces on your host operating system, which is also the default
behaviour. If you only want the exposed container ports to be bound to a specific IP address (such as 127.0.0.1),
you can add this IP address here, but note, in this case you must add a trailing colon (:).

Name Allowed values Default value
LOCAL_LISTEN_ADDR IP address empty

Examples:

Value Meaning
127.0.0.1: only expose ports on your host os on 127.0.0.1. Note the trailing :
192.168.0.1: only expose ports on your host os on 192.168.0.1. Note the trailing :
0.0.0.0: listen on all host computer interfaces / IP addresses

listen on all host computer interfaces / IP addresses

Note: When using Docker Toolbox, you must leave this variable empty, in order to have the exposed ports
available on the external interface of the virtual machine.

46.1.5 TLD_SUFFIX

This variable controls all of your projects domain suffix.

Name Allowed values Default value
TLD_SUFFIX alpha-num string loc

Your project domains are built together out of the project directory name and the TLD_SUFFIX. The formula is like
this: http://<project-dir>.<TLD_SUFFIX>.

You can even use official tld’s and have your nameserver point to an internal LAN id, to make this project visible to
everyone in your corporate LAN.

How does it look?

46.1. Core settings 203

devilbox Documentation

Project dir TLD_SUFFIX Project URL
my-test loc http://my-test.loc
example loc http://example.loc
www.test loc http://www.test.loc
my-test local http://my-test.local
example local http://example.local
www.test local http://www.test.local
my-test net http://my-test.net
example com http://example.com
www.test org http://www.test.org

Warning: Do not use dev as a domain suffix (I know, it’s tempting). It has been registered by Google and they
advertise the HSTS header which makes your browser redirect every http request to https.

See also: This blog post

Warning: Do not use localhost as a domain suffix. There is an RFC draft to make sure all localhost requests,
including their sub domains should be redirected to the systems loopback interface. Docker has already released a
commit preventing the use of localhost on MacOS.

See also: RFC Draft and Docker Release notes

46.1.6 EXTRA_HOSTS

This variable allows you to add additional DNS entries from hosts outside the Devilbox network, such as hosts running
on your host operating system, the LAN or from the internet.

Name Allowed values Default value
EXTRA_HOSTS comma separated host mapping empty

Adding hosts can be done in two ways:

1. Add DNS entry for an IP address

2. Add DNS entry for a hostname/CNAME which will be mapped to whatever IP address it will resolve

The general structure to add extra hosts looks like this

Single host
EXTRA_HOSTS='hostname=1.1.1.1'
EXTRA_HOSTS='hostname=CNAME'

Multiple hosts
EXTRA_HOSTS='hostname1=1.1.1.1,hostname2=2.2.2.2'
EXTRA_HOSTS='hostname1=CNAME1,hostname2=CNAME2'

• The left side represents the name by which the host will be available by

• The right side represents the IP address by which the new name will resolve to

• If the right side is a CNAME itself, it will be first resolved to an IP address and then the left side will resolve to
that IP address.

204 Chapter 46. .env file

https://icannwiki.org/.dev
https://en.wikipedia.org/wiki/HTTP_Strict_Transport_Security
https://ma.ttias.be/chrome-force-dev-domains-https-via-preloaded-hsts
https://tools.ietf.org/html/draft-west-let-localhost-be-localhost-06
https://docs.docker.com/docker-for-mac/release-notes/#docker-community-edition-17120-ce-mac46-2018-01-09

devilbox Documentation

A few examples for adding extra hosts:

1. One entry:
The following extra host 'loc' is added and will always point to 192.168.0.7.
When reverse resolving '192.168.0.7' it will answer with 'tld'.
EXTRA_HOSTS='loc=192.168.0.7'

2. One entry:
The following extra host 'my.host.loc' is added and will always point to 192.168.0.
→˓9.
When reverse resolving '192.168.0.9' it will answer with 'my.host'.
EXTRA_HOSTS='my.host.loc=192.168.0.9'

3. Two entries:
The following extra host 'tld' is added and will always point to 192.168.0.1.
When reverse resolving '192.168.0.1' it will answer with 'tld'.
A second extra host 'example.org' is added and always redirects to 192.168.0.2
When reverse resolving '192.168.0.2' it will answer with 'example.org'.
EXTRA_HOSTS='tld=192.168.0.1,example.org=192.168.0.2'

4. Using CNAME's for resolving:
The following extra host 'my.host' is added and will always point to whatever
IP example.org resolves to.
When reverse resolving '192.168.0.1' it will answer with 'my.host'.
EXTRA_HOSTS='my.host=example.org'

See also:

This resembles the feature of Docker Compose: extra_hosts to add external links.

See also:

Communicating with external hosts

46.1.7 NEW_UID

This setting controls one of the core concepts of the Devilbox. It overcomes the problem of syncronizing file and
directory permissions between the Docker container and your host operating system.

You should set this value to the user id of your host operating systems user you actually work with. How do you find
out your user id?

host> id -u
1000

In most cases (on Linux and MacOS), this will be 1000 if you are the first and only user on your system, however it
could also be a different value.

Name Allowed values Default value
NEW_UID valid uid 1000

The Devilbox own containers will then pick up this value during startup and change their internal user id to the one
specified. Services like PHP-FPM, Apache and Nginx will then do read and write operation of files with this uid, so
all files mounted will have permissions as your local user and you do not have to fix permissions afterwards.

See also:

46.1. Core settings 205

https://docs.docker.com/compose/compose-file/#external_links

devilbox Documentation

Syncronize container permissions Read up more on the general problem of trying to have syncronized permissions
between the host system and a running Docker container.

46.1.8 NEW_GID

This is the equivalent to user id for groups and addresses the same concept. See NEW_UID.

How do you find out your group id?

host> id -g
1000

In most cases (on Linux and MacOS), this will be 1000 if you are the first and only user on your system, however it
could also be a different value.

Name Allowed values Default value
NEW_GID valid gid 1000

See also:

Syncronize container permissions Read up more on the general problem of trying to have syncronized permissions
between the host system and a running Docker container.

46.1.9 TIMEZONE

This variable controls the system as well as service timezone for the Devilbox’s own containers. This is especially
useful to keep PHP and database timezones in sync.

Name Allowed values Default value
TIMEZONE valid timezone Europe/Berlin

Have a look at Wikipedia to get a list of valid timezones: https://en.wikipedia.org/wiki/List_of_tz_database_time_
zones

Note: It is always a good practice not to assume a specific timezone anyway and store all values in UTC (such as
time types in MySQL).

46.2 Intranet settings

46.2.1 DNS_CHECK_TIMEOUT

The Devilbox intranet validates if every project has a corresponding DNS record (either an official DNS record, one
that came from its own Auto-DNS or an /etc/hosts entry). By doing so it queries the DNS record based on
<project-dir>.<TLD_SUFFIX>. In case it does not exist, the query itself might take a while and the intranet
page will be unresponsive during that time. In order to avoid long waiting times, you can set the DNS query time-out
in seconds after which the query should stop and report as unsuccessful. The default is 1 second, wich should be fairly
sane for all use-cases.

206 Chapter 46. .env file

https://en.wikipedia.org/wiki/List_of_tz_database_time_zones
https://en.wikipedia.org/wiki/List_of_tz_database_time_zones

devilbox Documentation

Name Allowed values Default value
DNS_CHECK_TIMEOUT integers 1

46.2.2 DEVILBOX_UI_SSL_CN

When accessing the Devilbox intranet via https it will use an automatically created SSL certificate. Each SSL
certificate requires a valid Common Name, which must match the virtual host name.

This setting let’s you specify by what name you are accessing the Devilbox intranet. The default is localhost,
but if you have created your own alias, you must change this value accordingly. Also note that multiple values are
possible and must be separated with a comma. When you add an asterisk (*.) to the beginning, it means it will create
a wildcard certificate for that hostname.

Name Allowed values Default value
DEVILBOX_UI_SSL_CN comma separated list of

CN’s
localhost,*.localhost,devilbox,*.
devilbox

Examples:

• DEVILBOX_UI_SSL_CN=localhost

• DEVILBOX_UI_SSL_CN=localhost,*.localhost

• DEVILBOX_UI_SSL_CN=localhost,*.localhost,devilbox,*.devilbox

• DEVILBOX_UI_SSL_CN=intranet.example.com

See also:

HTTPS (SSL)

46.2.3 DEVILBOX_UI_PROTECT

By setting this variable to 1, the Devilbox intranet will be password protected. This might be useful, if you share your
running Devilbox instance accross a LAN, but do not want everybody to have access to the intranet itself, just to the
projects you actually provide.

Name Allowed values Default value
DEVILBOX_UI_PROTECT 0 or 1 0

Note: Also pay attention to the next env var, which will control the password for the login:
DEVILBOX_UI_PASSWORD.

46.2.4 DEVILBOX_UI_PASSWORD

When the devilbox intranet is password-protected via DEVILBOX_UI_PROTECT, this is the actual password by
which it will be protected.

Name Allowed values Default value
DEVILBOX_UI_PASSWORD any string password

46.2. Intranet settings 207

devilbox Documentation

46.2.5 DEVILBOX_UI_ENABLE

In case you want to completely disable the Devilbox intranet, such as when running it on production, you need to set
this variable to 0.

By disabling the intranet, the webserver will simply remove the default virtual host and redirect all IP-based requests
to the first available virtual host, which will be you first project when ordering their names alphabetically.

Name Allowed values Default value
DEVILBOX_UI_ENABLE 0 or 1 1

46.3 Docker image versions

The following settings reflect one of the main goals of the Devilbox: being able to run any combination of all container
versions.

Note: Any change for those settings requires a restart of the devilbox.

46.3.1 PHP_SERVER

This variable choses your desired PHP-FPM version to be started.

Name Allowed values Default
value

PHP_SERVERphp-fpm-5.4 php-fpm-5.5 php-fpm-5.6 php-fpm-7.0
php-fpm-7.1 php-fpm-7.2

php-fpm-7.
1

All values are already available in the .env file and just need to be commented or uncommented. If multiple values
are uncommented, the last uncommented variable one takes precedences:

Listing 1: .env

host> grep PHP_SERVER .env

#PHP_SERVER=php-fpm-5.4
#PHP_SERVER=php-fpm-5.5
#PHP_SERVER=php-fpm-5.6
#PHP_SERVER=php-fpm-7.0
PHP_SERVER=php-fpm-7.1
#PHP_SERVER=php-fpm-7.2
#PHP_SERVER=php-fpm-7.3
#PHP_SERVER=hhvm-latest

46.3.2 HTTPD_SERVER

This variable choses your desired web server version to be started.

Name Allowed values Default value
HTTPD_SERVER apache-2.2 apache-2.4 nginx-stable nginx-mainline nginx-stable

208 Chapter 46. .env file

devilbox Documentation

All values are already available in the .env file and just need to be commented or uncommented. If multiple values
are uncommented, the last uncommented variable one takes precedences:

Listing 2: .env

host> grep HTTPD_SERVER .env

#HTTPD_SERVER=apache-2.2
#HTTPD_SERVER=apache-2.4
HTTPD_SERVER=nginx-stable
#HTTPD_SERVER=nginx-mainline

46.3.3 MYSQL_SERVER

This variable choses your desired MySQL server version to be started.

Name Allowed values Default value
MYSQL_SERVER mysql-5.5 mysql-5.6 mariadb-10.2 percona-5.7 and many

more
mariadb-10.
1

All values are already available in the .env file and just need to be commented or uncommented. If multiple values
are uncommented, the last uncommented variable one takes precedences:

Listing 3: .env

host> grep MYSQL_SERVER .env

#MYSQL_SERVER=mysql-5.5
#MYSQL_SERVER=mysql-5.6
#MYSQL_SERVER=mysql-5.7
#MYSQL_SERVER=mysql-8.0
#MYSQL_SERVER=mariadb-5.5
#MYSQL_SERVER=mariadb-10.0
MYSQL_SERVER=mariadb-10.1
#MYSQL_SERVER=mariadb-10.2
#MYSQL_SERVER=mariadb-10.3
#MYSQL_SERVER=percona-5.5
#MYSQL_SERVER=percona-5.6
#MYSQL_SERVER=percona-5.7

46.3.4 PGSQL_SERVER

This variable choses your desired PostgreSQL server version to be started.

Name Allowed values Default value
PGSQL_SERVER 9.1 9.2 9.3 9.4 and many more 9.6

All values are already available in the .env file and just need to be commented or uncommented. If multiple values
are uncommented, the last uncommented variable one takes precedences:

46.3. Docker image versions 209

devilbox Documentation

Listing 4: .env

host> grep PGSQL_SERVER .env

#PGSQL_SERVER=9.1
#PGSQL_SERVER=9.2
#PGSQL_SERVER=9.3
#PGSQL_SERVER=9.4
#PGSQL_SERVER=9.5
PGSQL_SERVER=9.6
#PGSQL_SERVER=10.0

Note: This is the official PostgreSQL server which might already have other tags available, check their official website
for even more versions. https://hub.docker.com/_/postgres/

46.3.5 REDIS_SERVER

This variable choses your desired Redis server version to be started.

Name Allowed values Default value
REDIS_SERVER 2.8 3.0 3.2 4.0 and many more 4.0

All values are already available in the .env file and just need to be commented or uncommented. If multiple values
are uncommented, the last uncommented variable one takes precedences:

Listing 5: .env

host> grep REDIS_SERVER .env

#REDIS_SERVER=2.8
#REDIS_SERVER=3.0
#REDIS_SERVER=3.2
REDIS_SERVER=4.0

Note: This is the official Redis server which might already have other tags available, check their official website for
even more versions. https://hub.docker.com/_/redis/

46.3.6 MEMCD_SERVER

This variable choses your desired Memcached server version to be started.

Name Allowed values Default value
MEMCD_SERVER 1.4.21 1.4.22 1.4.23 1.4.24 and many more 1.5.2

All values are already available in the .env file and just need to be commented or uncommented. If multiple values
are uncommented, the last uncommented variable one takes precedences:

210 Chapter 46. .env file

https://hub.docker.com/_/postgres/
https://hub.docker.com/_/redis/

devilbox Documentation

Listing 6: .env

host> grep MEMCD_SERVER .env

#MEMCD_SERVER=1.4.21
#MEMCD_SERVER=1.4.22
#MEMCD_SERVER=1.4.23
#MEMCD_SERVER=1.4.24
#MEMCD_SERVER=1.4.25
#MEMCD_SERVER=1.4.26
#MEMCD_SERVER=1.4.27
#MEMCD_SERVER=1.4.28
#MEMCD_SERVER=1.4.29
#MEMCD_SERVER=1.4.30
#MEMCD_SERVER=1.4.31
#MEMCD_SERVER=1.4.32
#MEMCD_SERVER=1.4.33
#MEMCD_SERVER=1.4.34
#MEMCD_SERVER=1.4.35
#MEMCD_SERVER=1.4.36
#MEMCD_SERVER=1.4.37
#MEMCD_SERVER=1.4.38
#MEMCD_SERVER=1.4.39
#MEMCD_SERVER=1.5.0
#MEMCD_SERVER=1.5.1
MEMCD_SERVER=1.5.2
#MEMCD_SERVER=latest

Note: This is the official Memcached server which might already have other tags available, check their official website
for even more versions. https://hub.docker.com/_/memcached/

46.3.7 MONGO_SERVER

This variable choses your desired MongoDB server version to be started.

Name Allowed values Default value
MONGO_SERVER 2.8 3.0 3.2 3.4 and many more 3.4

All values are already available in the .env file and just need to be commented or uncommented. If multiple values
are uncommented, the last uncommented variable one takes precedences:

Listing 7: .env

host> grep MONGO_SERVER .env

#MONGO_SERVER=2.8
#MONGO_SERVER=3.0
#MONGO_SERVER=3.2
MONGO_SERVER=3.4
#MONGO_SERVER=3.5

Note: This is the official MongoDB server which might already have other tags available, check their official website

46.3. Docker image versions 211

https://hub.docker.com/_/memcached/

devilbox Documentation

for even more versions. https://hub.docker.com/_/mongo/

46.4 Docker host mounts

The Docker host mounts are directory paths on your host operating system that will be mounted into the running
Docker container. This makes data persistent accross restarts and let them be available on both sides: Your host
operating system as well as inside the container.

This also gives you the choice to edit data on your host operating system, such as with your favourite IDE/editor and
also inside the container, by using the bundled tools, such as downloading libraries with composer and others.

Being able to do that on both sides, removes the need to install any development tools (except your IDE/editor) on
your host and have everything fully encapsulated into the containers itself.

46.4.1 HOST_PATH_HTTPD_DATADIR

This is an absolute or relative path (relative to Devilbox git directory) to your data directory.

See also:

Data directory

By default, all of your websites/projects will be stored in that directory. If however you want to separate your data
from the Devilbox git directory, do change the path to a place where you want to store all of your projects on your host
computer.

• Relative path: relative to the devilbox git directory (Must start with .)

• Absolute path: Full path (Must start with /)

Name Allowed values Default value
HOST_PATH_HTTPD_DATADIR valid path ./data/www

Example

If you want to move all your projects to /home/myuser/workspace/web/ for example, just set it like this:

Listing 8: .env

HOST_PATH_HTTPD_DATADIR=/home/myuser/workspace/web

Mapping

No matter what path you assign, inside the PHP and the web server container your data dir will always be /shared/
httpd/.

Warning: Do not create any symlinks inside your project directories that go outside the data dir. Anything which
is outside this directory is not mounted into the container.

212 Chapter 46. .env file

https://hub.docker.com/_/mongo/

devilbox Documentation

Warning:

Remove stopped container Whenever you change this value you have to stop the Devilbox and also remove the
stopped container via docker-compose rm.

46.4.2 HOST_PATH_MYSQL_DATADIR

This is an absolute or relative path (relative to Devilbox git directory) to your MySQL data directory.

• Relative path: relative to the devilbox git directory (Must start with .)

• Absolute path: Full path (Must start with /)

Name Allowed values Default value
HOST_PATH_MYSQL_DATADIR valid path ./data/mysql

Each MySQL, MariaDB or PerconaDB version will have its own subdirectory, so when first running MySQL 5.5 and
then starting MySQL 5.6, you will have a different database with different data.

Having each version separated from each other makes sure that you don’t accidently upgrade from a lower to a higher
version which might not be reversable. (MySQL auto-upgrade certain older data files to newer, but this process does
not necessarily work the other way round and could result in failues).

The directory structure will look something like this:

host> ls -l ./data/mysql/
drwxrwxr-x 6 48 48 4096 Jun 21 08:47 mariadb-10.0/
drwxrwxr-x 6 48 48 4096 Jun 21 08:47 mariadb-10.1/
drwxrwxr-x 6 48 48 4096 Jun 21 08:47 mariadb-10.2/
drwxrwxr-x 6 48 48 4096 Jun 21 08:47 mariadb-10.3/
drwxrwxr-x 6 48 48 4096 Jun 21 08:47 mysql-5.5/
drwxrwxr-x 6 48 48 4096 Jun 21 08:47 mysql-5.6/
drwxrwxr-x 6 48 48 4096 Jun 21 08:47 mysql-5.7/
drwxrwxr-x 6 48 48 4096 Jun 21 08:47 mysql-8.0/
drwxrwxr-x 6 48 48 4096 Jun 21 08:47 percona-5.5/
drwxrwxr-x 6 48 48 4096 Jun 21 08:47 percona-5.6/
drwxrwxr-x 6 48 48 4096 Jun 21 08:47 percona-5.7/

Warning:

Remove stopped container Whenever you change this value you have to stop the Devilbox and also remove the
stopped container via docker-compose rm.

46.4.3 HOST_PATH_PGSQL_DATADIR

This is an absolute or relative path (relative to Devilbox git directory) to your PostgreSQL data directory.

• Relative path: relative to the devilbox git directory (Must start with .)

• Absolute path: Full path (Must start with /)

Name Allowed values Default value
HOST_PATH_PGSQL_DATADIR valid path ./data/pgsql

46.4. Docker host mounts 213

devilbox Documentation

Each PostgreSQL version will have its own subdirectory, so when first running PostgreSQL 9.1 and then starting
PostgreSQL 10.0, you will have a different database with different data.

Having each version separated from each other makes sure that you don’t accidently upgrade from a lower to a higher
version which might not be reversable.

The directory structure will look something like this:

host> ls -l ./data/pgsql/
drwxrwxr-x 6 48 48 4096 Jun 21 08:47 9.1/
drwxrwxr-x 6 48 48 4096 Jun 21 08:47 9.2/
drwxrwxr-x 6 48 48 4096 Jun 21 08:47 9.3/
drwxrwxr-x 6 48 48 4096 Jun 21 08:47 9.4/
drwxrwxr-x 6 48 48 4096 Jun 21 08:47 9.5/
drwxrwxr-x 6 48 48 4096 Jun 21 08:47 9.6/

Warning:

Remove stopped container Whenever you change this value you have to stop the Devilbox and also remove the
stopped container via docker-compose rm.

46.4.4 HOST_PATH_MONGO_DATADIR

This is an absolute or relative path (relative to Devilbox git directory) to your MongoDB data directory.

• Relative path: relative to the devilbox git directory (Must start with .)

• Absolute path: Full path (Must start with /)

Name Allowed values Default value
HOST_PATH_MONGO_DATADIR valid path ./data/mongo

Each MongoDB version will have its own subdirectory, so when first running MongoDB 2.8 and then starting Mon-
goDB 3.5, you will have a different database with different data.

Having each version separated from each other makes sure that you don’t accidently upgrade from a lower to a higher
version which might not be reversable.

The directory structure will look something like this:

host> ls -l ./data/mongo/
drwxrwxr-x 6 48 48 4096 Jun 21 08:47 2.8/
drwxrwxr-x 6 48 48 4096 Jun 21 08:47 3.0/
drwxrwxr-x 6 48 48 4096 Jun 21 08:47 3.2/
drwxrwxr-x 6 48 48 4096 Jun 21 08:47 3.4/
drwxrwxr-x 6 48 48 4096 Jun 21 08:47 3.5/

Warning:

Remove stopped container Whenever you change this value you have to stop the Devilbox and also remove the
stopped container via docker-compose rm.

214 Chapter 46. .env file

devilbox Documentation

46.5 Docker host ports

All describned host ports below are ports that the Docker container expose on your host operating system. By default
each port will be exposed to all interfaces or IP addresses of the host operating system. This can be controlled with
LOCAL_LISTEN_ADDR.

How to list used ports on Linux and MacOS

Open a terminal and type the following:

host> netstat -an | grep 'LISTEN\s'
tcp 0 0 127.0.0.1:53585 0.0.0.0:* LISTEN
tcp 0 0 127.0.0.1:37715 0.0.0.0:* LISTEN
tcp 0 0 127.0.0.1:58555 0.0.0.0:* LISTEN
tcp 0 0 127.0.0.1:48573 0.0.0.0:* LISTEN
tcp 0 0 127.0.0.1:34591 0.0.0.0:* LISTEN
tcp 0 0 127.0.0.1:8000 0.0.0.0:* LISTEN

How to list used ports on Windows

Open the command prompt and type the following:

C:\WINDOWS\system32> netstat -an
Proto Local Address Foreign Address State
TCP 0.0.0.0:80 0.0.0.0:0 LISTENING
TCP 0.0.0.0:145 0.0.0.0:0 LISTENING
TCP 0.0.0.0:445 0.0.0.0:0 LISTENING
TCP 0.0.0.0:1875 0.0.0.0:0 LISTENING

Warning:

Docker Toolbox When using Docker Toobox ensure that ports are exposed to all interfaces. See LO-
CAL_LISTEN_ADDR

Warning: Before setting the ports, ensure that they are not already in use on your host operating system by other
services.

46.5.1 HOST_PORT_HTTPD

The port to expose for the web server (Apache or Nginx). This is usually 80. Set it to something else if 80 is already
in use on your host operating system.

Name Allowed values Default value
HOST_PORT_HTTPD 1 - 65535 80

46.5.2 HOST_PORT_HTTPD_SSL

The port to expose for the web server (Apache or Nginx) for HTTPS (SSL) requests. This is usually 443. Set it to
something else if 443 is already in use on your host operating system.

46.5. Docker host ports 215

devilbox Documentation

46.5.3 HOST_PORT_MYSQL

The port to expose for the MySQL server (MySQL, MariaDB or PerconaDB). This is usually 3306. Set it to something
else if 3306 is already in use on your host operating system.

Name Allowed values Default value
HOST_PORT_MYSQL 1 - 65535 3306

46.5.4 HOST_PORT_PGSQL

The port to expose for the PostgreSQL server. This is usually 5432. Set it to something else if 5432 is already in use
on your host operating system.

Name Allowed values Default value
HOST_PORT_PGSQL 1 - 65535 5432

46.5.5 HOST_PORT_REDIS

The port to expose for the Redis server. This is usually 6379. Set it to something else if 6379 is already in use on your
host operating system.

Name Allowed values Default value
HOST_PORT_REDIS 1 - 65535 5432

46.5.6 HOST_PORT_MEMCD

The port to expose for the Memcached server. This is usually 11211. Set it to something else if 11211 is already in
use on your host operating system.

Name Allowed values Default value
HOST_PORT_MEMCD 1 - 65535 11211

46.5.7 HOST_PORT_MONGO

The port to expose for the MongoDB server. This is usually 27017. Set it to something else if 27017 is already in use
on your host operating system.

Name Allowed values Default value
HOST_PORT_MONGO 1 - 65535 27017

46.5.8 HOST_PORT_BIND

The port to expose for the BIND DNS server. This is usually 53. Set it to something else if 53 is already in use on
your host operating system.

Name Allowed values Default value
HOST_PORT_BIND 1 - 65535 1053

216 Chapter 46. .env file

devilbox Documentation

Warning: As you might have noticed, BIND is not set to its default port 53 by default, but rather to 1053. This
is because some operating system already have a local DNS resolver running on port 53 which would result in a
failure when this BIND server is starting.

You only need to set BIND to port 53 when you want to use the Auto-DNS feautre of the Devilbox. When doing
so, read this article with care: Auto-DNS.

46.6 Container settings

46.6.1 PHP

Custom variables

The PHP container itself does not offer any variables, however you can add any key-value pair variable into the .env
file which will automatically be available to the started PHP container and thus in any of your PHP projects.

If your application requires a variable to determine if it is run under development or production, for example:
APPLICATION_ENV, you can just add this to the .env file:

Listing 9: .env

host> grep APPLICATION_ENV .env

APPLICATION_ENV=development

Within your php application/file you can then access this variable via the getenv function:

Listing 10: index.php

<?php
// Example use of getenv()
echo getenv('APPLICATION_ENV');
?>

This will then output development.

Note: Add as many custom environment variables as you require.

See also:

Custom environment variables

46.6.2 Web server

HTTPD_DOCROOT_DIR

This variable specifies the name of a directory within each of your project directories from which the web server will
serve the files.

Together with the HOST_PATH_HTTPD_DATADIR and your project directory, the HTTPD_DOCROOT_DIRwill built
up the final location of a virtual hosts document root.

46.6. Container settings 217

devilbox Documentation

Name Allowed values Default value
HTTPD_DOCROOT_DIR valid dir name htdocs

Example 1

• devilbox git directory location: /home/user-1/repo/devilbox

• HOST_PATH_HTTPD_DATADIR: ./data/www (relative)

• Project directory: my-first-project

• HTTPD_DOCROOT_DIR: htdocs

The location from where the web server will serve files for my-first-project is then: /home/user-1/repo/
devilbox/data/www/my-first-project/htdocs

Example 2

• devilbox git directory location: /home/user-1/repo/devilbox

• HOST_PATH_HTTPD_DATADIR: /home/user-1/www (absolute)

• Project directory: my-first-project

• HTTPD_DOCROOT_DIR: htdocs

The location from where the web server will serve files for my-first-project is then: /home/user-1/www/
my-first-project/htdocs

Directory structure: default

Let’s have a look how the directory is actually built up:

Project directory
host> ls -l data/www/my-first-project/
total 4
drwxr-xr-x 2 cytopia cytopia 4096 Mar 12 23:05 htdocs/

htdocs directory inside your project directory
host> ls -l data/www/my-first-project/htdocs
total 4
-rw-r--r-- 1 cytopia cytopia 87 Mar 12 23:05 index.php

By calling your proect url, the index.php file will be served.

Directory structure: nested symlink

Most of the time you would clone or otherwise download a PHP framework, which in most cases has its own www
directory somewhere nested. How can this be linked to the htdocs directory?

Let’s have a look how the directory is actually built up:

Project directory
host> ls -l data/www/my-first-project/
total 4
drwxr-xr-x 2 cytopia cytopia 4096 Mar 12 23:05 cakephp/
lrwxrwxrwx 1 cytopia cytopia 15 Mar 17 09:36 htdocs -> cakephp/webroot/

htdocs directory inside your project directory
host> ls -l data/www/my-first-project/htdocs
total 4
-rw-r--r-- 1 cytopia cytopia 87 Mar 12 23:05 index.php

218 Chapter 46. .env file

devilbox Documentation

As you can see, the web server is still able to server the files from the htdocs location, this time however, htdocs
itself is a symlink pointing to a much deeper and nested location inside an actual framework directory.

HTTPD_TEMPLATE_DIR

This variable specifies the directory name (which is just in your project directory, next to the HTTPD_DOCROOT_DIR
directory) in which you can hold custom web server configuration files.

Every virtual host (which represents a project) can be fully customized to its own needs, independently of other
virtual hosts.

This directory does not exist by default and you need to create it. Additionally you will also have to populate it with
one of three yaml-based template files.

Name Allowed values Default value
HTTPD_TEMPLATE_DIR valid dir name .devilbox

Let’s have a look at an imaginary project directory called my-first-project:

Project directory
host> ls -l data/www/my-first-project/
total 4
drwxr-xr-x 2 cytopia cytopia 4096 Mar 12 23:05 htdocs/

Inside this your project directory you will need to create another directory which is called .devilbox by default. If
you change the HTTPD_TEMPLATE_DIR variable to something else, you will have to create a directory by whatever
name you chose for that variable.

Project directory
host> cd data/www/my-first-project/
host> mkdir .devilbox
host> ls -l
total 4
drwxr-xr-x 2 cytopia cytopia 4096 Mar 12 23:05 .devilbox/
drwxr-xr-x 2 cytopia cytopia 4096 Mar 12 23:05 htdocs/

Now you need to copy the vhost-gen templates into the .devilbox directory. The templates are available in the
Devilbox git directory under templates/vhost-gen/.

By copying those files into your project template directory, nothing will change, these are the default templates that
will create the virtual host exactly the same way as if they were not present.

Navigate into the devilbox directory
host> cd path/to/devilbox

Copy templates to your project directory
host> cp templates/vhost-gen/* data/www/my-first-project/.devilbox/

Let’s have a look how the directory is actually built up:

Project directory
host> ls -l data/www/my-first-project/
total 4
drwxr-xr-x 2 cytopia cytopia 4096 Mar 12 23:05 .devilbox/
drwxr-xr-x 2 cytopia cytopia 4096 Mar 12 23:05 htdocs/

(continues on next page)

46.6. Container settings 219

devilbox Documentation

(continued from previous page)

template directory inside your project directory
host> ls -l data/www/my-first-project/htdocs/.devilbox
total 4
-rw-r--r-- 1 cytopia cytopia 87 Mar 12 23:05 apache22.yml
-rw-r--r-- 1 cytopia cytopia 87 Mar 12 23:05 apache24.yml
-rw-r--r-- 1 cytopia cytopia 87 Mar 12 23:05 nginx.yml

The three files apache22.yml, apache24.yml and nginx.yml let you customize your web servers virtual
host to anything from adding rewrite rules, overwriting directory index to even changing the server name or adding
locations to other assets.

See also:

The whole process is based on a project called vhost-gen. A virtual host generator for Apache 2.2, Apache 2.4 and
any Nginx version.

See also:

Customize your virtual host When you want to find out more how to actually customize each virtual host to its own
need, read up more on Customized virtual host (vhost-gen).

Tutorials Also have a look at this tutorial which is a walk-through showing you how to modify a virtual host and
make it serve all files for multiple sub domains (server names): Adding Sub domains

46.6.3 MySQL

MYSQL_ROOT_PASSWORD

If you start a MySQL container for the first time, it will setup MySQL itself with this specified password. If you do
change the root password to something else, make sure to also set it accordingly in .env, otherwise the devilbox will
not be able to connect to MySQL and will not be able to display information inside the bundled intranet.

Name Allowed values Default value
MYSQL_ROOT_PASSWORD any string empty (no password)

Warning: Keep this variable in sync with the actual MySQL root password.

MYSQL_GENERAL_LOG

This variable controls the logging behaviour of the MySQL server (MySQL, MariaDB and PerconaDB). As the Dev-
ilbox is intended to be used for development, this feature is turned on by default.

Name Allowed values Default value
MYSQL_GENERAL_LOG 0 or 1 0

MySQL documentation: “The general query log is a general record of what mysqld is doing. The server writes
information to this log when clients connect or disconnect, and it logs each SQL statement received from clients.
The general query log can be very useful when you suspect an error in a client and want to know exactly what
the client sent to mysqld.”

– https://dev.mysql.com/doc/refman/5.7/en/query-log.html

220 Chapter 46. .env file

https://github.com/devilbox/vhost-gen
https://dev.mysql.com/doc/refman/5.7/en/query-log.html

devilbox Documentation

46.6.4 PostgreSQL

PGSQL_ROOT_USER

If you start a PostgreSQL container for the first time, it will setup PostgreSQL itself with a specified username and
password. If you do change the root username or password to something else, make sure to also set it accordingly in
.‘‘env,‘‘ otherwise the devilbox will not be able to connect to PostgreSQL and will not be able to display information
inside the bundled intranet.

Name Allowed values Default value
PGSQL_ROOT_USER alphabetical string postgres

Warning: Keep this variable in sync with the actual PostgreSQL username.

PGSQL_ROOT_PASSWORD

If you start a PostgreSQL container for the first time, it will setup PostgreSQL itself with a specified username and
password. If you do change the root username or password to something else, make sure to also set it accordingly in
.‘‘env,‘‘ otherwise the devilbox will not be able to connect to PostgreSQL and will not be able to display information
inside the bundled intranet.

Name Allowed values Default value
PGSQL_ROOT_PASSWORD any string empty (no password)

Warning: Keep this variable in sync with the actual PostgreSQL password.

46.6.5 Bind

BIND_DNS_RESOLVER

This variable holds a comma separated list of IP addresses of DNS servers. By default using Google’s DNS server as
they are pretty fast.

Name Allowed values Default value
BIND_DNS_RESOLVER comma separated list of IP addresses 8.8.8.8,8.8.4.4

The devilbox is using its own DNS server internally (your host computer can also use it for Auto-DNS) in order
to resolve custom project domains defined by TLD_SUFFIX. To also be able to reach the internet from within the
Container there must be some kind of upstream DNS server to ask for queries.

Some examples:

BIND_DNS_RESOLVER='8.8.8.8'
BIND_DNS_RESOLVER='8.8.8.8,192.168.0.10'

46.6. Container settings 221

devilbox Documentation

Note: If you don’t trust the Google DNS server, then set it to something else. If you already have a DNS server inside
your LAN and also want your custom DNS (if any) to be available inside the containers, set the value to its IP address.

BIND_DNSSEC_VALIDATE

This variable controls the DNSSEC validation of the DNS server. By default it is turned off.

Name Allowed values Default value
BIND_DNSSEC_VALIDATE no, auto, yes no

• yes - DNSSEC validation is enabled, but a trust anchor must be manually configured. No validation will
actually take place.

• no - DNSSEC validation is disabled, and recursive server will behave in the “old fashioned” way of performing
insecure DNS lookups, until you have manually configured at least one trusted key.

• auto - DNSSEC validation is enabled, and a default trust anchor (included as part of BIND) for the DNS root
zone is used.

BIND_LOG_DNS

This variable controls if DNS queries should be shown in Docker log output or not. By default no DNS queries are
shown.

Name Allowed values Default value
BIND_LOG_DNS 1 or 0 0

If enabled all DNS queries are shown. This is useful for debugging.

BIND_TTL_TIME

This variable controls the DNS TTL in seconds. If empty or removed it will fallback to a sane default.

Name Allowed values Default value
BIND_TTL_TIME integer empty

See also:

• BIND TTL

• BIND SOA

BIND_REFRESH_TIME

This variable controls the DNS Refresh time in seconds. If empty or removed it will fallback to a sane default.

Name Allowed values Default value
BIND_REFRESH_TIME integer empty

See also:

222 Chapter 46. .env file

http://www.zytrax.com/books/dns/apa/ttl.html
http://www.zytrax.com/books/dns/ch8/soa.html

devilbox Documentation

BIND SOA

BIND_RETRY_TIME

This variable controls the DNS Retry time in seconds. If empty or removed it will fallback to a sane default.

Name Allowed values Default value
BIND_RETRY_TIME integer empty

See also:

BIND SOA

BIND_EXPIRY_TIME

This variable controls the DNS Expiry time in seconds. If empty or removed it will fallback to a sane default.

Name Allowed values Default value
BIND_EXPIRY_TIME integer empty

See also:

BIND SOA

BIND_MAX_CACHE_TIME

This variable controls the DNS Max Cache time in seconds. If empty or removed it will fallback to a sane default.

Name Allowed values Default value
BIND_MAX_CACHE_TIME integer empty

See also:

BIND SOA

46.6. Container settings 223

http://www.zytrax.com/books/dns/ch8/soa.html
http://www.zytrax.com/books/dns/ch8/soa.html
http://www.zytrax.com/books/dns/ch8/soa.html
http://www.zytrax.com/books/dns/ch8/soa.html

devilbox Documentation

224 Chapter 46. .env file

CHAPTER 47

docker-compose.yml

This file is the core of the Devilbox and glues together all Docker images.

It is very tempting to just change this file in order to add new services to the already existing once. However your git di-
rectory will become dirty and you will always have to stash your changes before pulling new features from remote. To
overcome this Docker Compose offers a default override file (docker-compose.override.yml) that let’s you
specify custom changes as well as completely new services without having to touch the default docker-compose.
yml.

See also:

To find out more read docker-compose.override.yml

225

devilbox Documentation

226 Chapter 47. docker-compose.yml

CHAPTER 48

docker-compose.override.yml

The docker-compose.override.yml is the configuration file where you can override existing settings from
docker-compose.yml or even add completely new services.

By default, this file does not exist and you must create it. You can either copy the existing docker-compose.
override.yml-example or create a new one.

Table of Contents

• Create docker-compose.override.yml

– Copy example file

– Create new file from scratch

• Further reading

See also:

Official Docker documentation: Share Compose configurations between files and projects

48.1 Create docker-compose.override.yml

48.1.1 Copy example file

host> cd path/to/devilbox
host> cp docker-compose.override.yml-example docker-compose.override.yml

48.1.2 Create new file from scratch

1. Create an empty file within the Devilbox git directory named docker-compose.override.yml

227

https://docs.docker.com/compose/extends

devilbox Documentation

2. Retrieve the currently used version from the existing docker-compose.yml file

3. Copy this version line to your newly created docker-compose.override.yml at the very top

Create an empty file
host> cd path/to/devilbox
host> touch docker-compose.override.yml

Retrieve the current version
host> grep ^version docker-compose.yml
version: '2.1'

Add this version line to docker-compose.override.yml
host> echo "version: '2.1'" > docker-compose.override.yml

Let’s see again how this file should look like now:

Listing 1: docker-compose.override.yml

version: '2.1'

Note: The documentation might be outdated and the version number might already be higher. Rely on the output of
the grep command.

48.2 Further reading

To dive deeper into this topic and see how to actually add new services or overwrite existing services follow the below
listed links:

See also:

• Add your own Docker image

• Overwrite existing Docker image

228 Chapter 48. docker-compose.override.yml

CHAPTER 49

apache.conf

Apache 2.2 and Apache 2.4 both come with their default vendor configuration. This might not be the ideal setup for
some people, so you have the chance to change any of those settings, by supplying custom configurations.

See also:

If you are rather using Nginx, have a look at: nginx.conf

Important: You could actually also create virtual hosts here, but it is recommended to use the Devilbox Auto-
vhost generation feature. If you want to custimize your current virtual hosts have a look at Customized virtual host
(vhost-gen).

Table of Contents

• General

• Examples

– Adjust KeepAlive settings for Apache 2.2

– Limit HTTP headers and GET size for Apache 2.4

49.1 General

You can set custom apache.conf configuration options for each Apache version separately. See the directory structure
for Apache configuration directories inside ./cfg/ directory:

host> ls -l path/to/devilbox/cfg/ | grep 'apache'

drwxr-xr-x 2 cytopia cytopia 4096 Mar 5 21:53 apache-2.2/
drwxr-xr-x 2 cytopia cytopia 4096 Mar 5 21:53 apache-2.4/

229

devilbox Documentation

Customization is achieved by placing a file into cfg/apache-X.X/ (where X.X stands for your Apache version).
The file must end by .conf in order to be sourced by the web server.

Each of the Apache configuration directories already contain an example file: devilbox-custom.
conf-example, that can simply be renamed to devilbox-custom.conf. This file holds some example values
that can be adjusted or commented out.

In order for the changes to be applied, you will have to restart the Devilbox.

49.2 Examples

49.2.1 Adjust KeepAlive settings for Apache 2.2

The following examples shows you how to change the KeepAlive, the MaxKeepAliveRequests as well as the
KeepAliveTimeout values of Apache 2.2.

Navigate to the Devilbox directory
host> cd path/to/devilbox

Navigate to Apache 2.2 config directory
host> cd cfg/apache-2.2

Create new conf file
host> touch keep_alive.conf

Now add the following content to the file:

Listing 1: keep_alive.conf

KeepAlive On
KeepAliveTimeout 10
MaxKeepAliveRequests 100

In order to apply the changes you need to restart the Devilbox.

Note: The above is just an example demonstration, you probably need other values for your setup. So make sure to
understand how to configure Apache, if you are going to change any of those settings.

49.2.2 Limit HTTP headers and GET size for Apache 2.4

The following examples shows you how to limit the amount of headers the client can send to the server as well as
changing the maximum URL GET size by adjusting LimitRequestFields, LimitRequestFieldSize and LimitRequest-
Line for Apache 2.4.

Navigate to the Devilbox directory
host> cd path/to/devilbox

Navigate to Apache 2.4 config directory
host> cd cfg/apache-2.4

Create new conf file
host> touch limits.conf

230 Chapter 49. apache.conf

https://httpd.apache.org/docs/2.2/mod/core.html#keepalive
https://httpd.apache.org/docs/2.2/mod/core.html#maxkeepaliverequests
https://httpd.apache.org/docs/2.2/mod/core.html#keepalivetimeout
http://httpd.apache.org/docs/current/mod/core.html#limitrequestfields
http://httpd.apache.org/docs/current/mod/core.html#limitrequestfieldsize
http://httpd.apache.org/docs/current/mod/core.html#limitrequestline
http://httpd.apache.org/docs/current/mod/core.html#limitrequestline

devilbox Documentation

Now add the following content to the file:

Listing 2: limits.conf

Limit amount of HTTP headers a client can send to the server
LimitRequestFields 20
LimitRequestFieldSize 4094

URL GET size
LimitRequestLine 2048

In order to apply the changes you need to restart the Devilbox.

Note: The above is just an example demonstration, you probably need other values for your setup. So make sure to
understand how to configure Apache, if you are going to change any of those settings.

49.2. Examples 231

devilbox Documentation

232 Chapter 49. apache.conf

CHAPTER 50

nginx.conf

Nginx stable and Nginx mainline both come with their default vendor configuration. This might not be the ideal setup
for some people, so you have the chance to change any of those settings, by supplying custom configurations.

See also:

If you are rather using Apache, have a look at: apache.conf

Important: You could actually also create virtual hosts here, but it is recommended to use the Devilbox Auto-
vhost generation feature. If you want to custimize your current virtual hosts have a look at Customized virtual host
(vhost-gen).

Table of Contents

• General

• Examples

– Adjust KeepAlive settings for Nginx stable

– Adjust timeout settings for Nginx mainline

50.1 General

You can set custom nginx.conf configuration options for each Nginx version separately. See the directory structure for
Nginx configuration directories inside ./cfg/ directory:

host> ls -l path/to/devilbox/cfg/ | grep 'nginx'

drwxr-xr-x 2 cytopia cytopia 4096 Mar 5 21:53 nginx-mainline/
drwxr-xr-x 2 cytopia cytopia 4096 Mar 5 21:53 nginx-stable/

233

devilbox Documentation

Customization is achieved by placing a file into cfg/nginx-X/ (where X stands for your Nginx flavoour). The file
must end by .conf in order to be sourced by the web server.

Each of the Nginx configuration directories already contain an example file: devilbox-custom.
conf-example, that can simply be renamed to devilbox-custom.conf. This file holds some example values
that can be adjusted or commented out.

In order for the changes to be applied, you will have to restart the Devilbox.

50.2 Examples

50.2.1 Adjust KeepAlive settings for Nginx stable

The following examples shows you how to change the keepalive, the keepalive_requests as well as the
keepalive_timeout values of Nginx stable.

Navigate to the Devilbox directory
host> cd path/to/devilbox

Navigate to Nginx stable config directory
host> cd cfg/nginx-stable

Create new conf file
host> touch keep_alive.conf

Now add the following content to the file:

Listing 1: keep_alive.conf

keepalive 10;
keepalive_timeout 10s;
keepalive_requests 100;

In order to apply the changes you need to restart the Devilbox.

Note: The above is just an example demonstration, you probably need other values for your setup. So make sure to
understand how to configure Nginx, if you are going to change any of those settings.

50.2.2 Adjust timeout settings for Nginx mainline

The following examples shows you how to adjust various timeout settings for Nginx mainline by adjusting
client_body_timeout, client_header_timeout and send_timeout directives.

Navigate to the Devilbox directory
host> cd path/to/devilbox

Navigate to Nginx mainline config directory
host> cd cfg/nginx-mainline

Create new conf file
host> touch timeouts.conf

Now add the following content to the file:

234 Chapter 50. nginx.conf

http://nginx.org/en/docs/http/ngx_http_upstream_module.html#keepalive
https://nginx.org/en/docs/http/ngx_http_core_module.html#keepalive_requests
https://nginx.org/en/docs/http/ngx_http_core_module.html#keepalive_timeout
https://nginx.org/en/docs/http/ngx_http_core_module.html#client_body_timeout
https://nginx.org/en/docs/http/ngx_http_core_module.html#client_header_timeout
https://nginx.org/en/docs/http/ngx_http_core_module.html#send_timeout

devilbox Documentation

Listing 2: timeouts.conf

client_body_timeout 60s;
client_header_timeout 60s;
send_timeout 60s;

In order to apply the changes you need to restart the Devilbox.

Note: The above is just an example demonstration, you probably need other values for your setup. So make sure to
understand how to configure Nginx, if you are going to change any of those settings.

50.2. Examples 235

devilbox Documentation

236 Chapter 50. nginx.conf

CHAPTER 51

php.ini

php.ini changes are global to all projects, but will only affect the currently selected PHP version.

Table of Contents

• General

• Examples

– Change memory_limit for PHP 7.1

– Change timeout values for PHP 5.6

51.1 General

You can set custom php.ini configuration options for each PHP version separately. See the directory structure for PHP
configuration directories inside ./cfg/ directory:

host> ls -l path/to/devilbox/cfg/ | grep 'php-ini'

drwxr-xr-x 2 cytopia cytopia 4096 Mar 5 21:53 php-ini-5.4/
drwxr-xr-x 2 cytopia cytopia 4096 Mar 5 21:53 php-ini-5.5/
drwxr-xr-x 2 cytopia cytopia 4096 Apr 3 22:04 php-ini-5.6/
drwxr-xr-x 2 cytopia cytopia 4096 Mar 5 21:53 php-ini-7.0/
drwxr-xr-x 2 cytopia cytopia 4096 Mar 5 21:53 php-ini-7.1/
drwxr-xr-x 2 cytopia cytopia 4096 Mar 5 21:53 php-ini-7.2/

Customization is achieved by placing a file into cfg/php-ini-X.X/ (where X.X stands for your PHP version).
The file must end by .ini in order to be sourced by the PHP-FPM server.

Each of the PHP ini configuration directories already contain an example file: devilbox-custom.
ini-example, that can simply be renamed to devilbox-custom.ini. This file holds some example values
that can be adjusted or commented out.

237

devilbox Documentation

In order for the changes to be applied, you will have to restart the Devilbox.

51.2 Examples

51.2.1 Change memory_limit for PHP 7.1

The following examples shows you how to change the memory_limit of PHP 7.1 to 4096 MB.

Navigate to the Devilbox directory
host> cd path/to/devilbox

Navigate to PHP 7.1 config directory
host> cd cfg/php-ini-7.1

Create new ini file
host> touch memory_limit.ini

Now add the following content to the file:

Listing 1: memory_limit.ini

[PHP]
memory_limit = 4096M

In order to apply the changes you need to restart the Devilbox. You can validate that the changes have taken place by
visiting the Devilbox intranet phpinfo page.

51.2.2 Change timeout values for PHP 5.6

The following examples shows you how to change the max_execution_time and max_input_time of PHP 5.6.

Navigate to the Devilbox directory
host> cd path/to/devilbox

Navigate to PHP 5.6 config directory
host> cd cfg/php-ini-5.6

Create new ini file
host> touch timeouts.ini

Now add the following content to the file:

Listing 2: timeouts.ini

[PHP]
max_execution_time = 180
max_input_time = 180

In order to apply the changes you need to restart the Devilbox. You can validate that the changes have taken place by
visiting the Devilbox intranet phpinfo page.

238 Chapter 51. php.ini

https://secure.php.net/manual/en/ini.core.php#ini.memory-limit
https://secure.php.net/manual/en/info.configuration.php#ini.max-execution-time
https://secure.php.net/manual/en/info.configuration.php#ini.max-input-time

CHAPTER 52

php-fpm.conf

php-fpm.conf changes are global to all projects, but will only affect the currently selected PHP version.

Table of Contents

• General

• Examples

– Change rlimit core for master process for PHP 7.1

– Change child process on pool www for PHP 5.6

– Set non-overwritable php.ini values for PHP 7.0

52.1 General

You can set custom php-fpm.conf configuration options for each PHP version separately. These changes affect the
PHP-FPM process itself, global as well as pool specific configuration can be set.

Note: The default PHP-FPM pool is called www in case you want to make changes to it.

See the directory structure for PHP-FPM configuration directories inside ./cfg/ directory:

host> ls -l path/to/devilbox/cfg/ | grep 'php-fpm'

drwxr-xr-x 2 cytopia cytopia 4096 Mar 5 21:53 php-fpm-5.4/
drwxr-xr-x 2 cytopia cytopia 4096 Mar 5 21:53 php-fpm-5.5/
drwxr-xr-x 2 cytopia cytopia 4096 Apr 3 22:04 php-fpm-5.6/
drwxr-xr-x 2 cytopia cytopia 4096 Mar 5 21:53 php-fpm-7.0/

(continues on next page)

239

devilbox Documentation

(continued from previous page)

drwxr-xr-x 2 cytopia cytopia 4096 Mar 5 21:53 php-fpm-7.1/
drwxr-xr-x 2 cytopia cytopia 4096 Mar 5 21:53 php-fpm-7.2/

Customization is achieved by placing a file into cfg/php-fpm-X.X/ (where X.X stands for your PHP version).
The file must end by .conf in order to be sourced by the PHP-FPM server.

Each of the PHP-FPM conf configuration directories already contain an example file: devilbox-custom.
conf-example, that can simply be renamed to devilbox-custom.conf. This file holds some example values
that can be adjusted or commented out.

In order for the changes to be applied, you will have to restart the Devilbox.

See also:

To find out about all available PHP-FPM directives, global or pool specific have a look at its documentation: https:
//secure.php.net/manual/en/install.fpm.configuration.php

52.2 Examples

52.2.1 Change rlimit core for master process for PHP 7.1

The following examples shows you how to change the rlimit_core of PHP-FPM 7.1 master process to 100.

Navigate to the Devilbox directory
host> cd path/to/devilbox

Navigate to PHP 7.1 config directory
host> cd cfg/php-fpm-7.1

Create new conf file
host> touch rlimit.conf

Now add the following content to the file:

Listing 1: rlimit.conf

[global]
rlimit_core = 100

Important: Note the [global] section.

In order to apply the changes you need to restart the Devilbox.

52.2.2 Change child process on pool www for PHP 5.6

The following examples shows you how to change the pm, pm.max_children, pm.start_servers, pm.min_spare_servers
and pm.max_spare_servers of PHP-FPM 5.6 on pool www.

Navigate to the Devilbox directory
host> cd path/to/devilbox

Navigate to PHP 5.6 config directory

(continues on next page)

240 Chapter 52. php-fpm.conf

https://secure.php.net/manual/en/install.fpm.configuration.php
https://secure.php.net/manual/en/install.fpm.configuration.php
https://secure.php.net/manual/en/install.fpm.configuration.php#rlimit-core-master
https://secure.php.net/manual/en/install.fpm.configuration.php#pm
https://secure.php.net/manual/en/install.fpm.configuration.php#pm.max-chidlren
https://secure.php.net/manual/en/install.fpm.configuration.php#pm.start-servers
https://secure.php.net/manual/en/install.fpm.configuration.php#pm.min-spare-servers
https://secure.php.net/manual/en/install.fpm.configuration.php#pm.max-spare-servers

devilbox Documentation

(continued from previous page)

host> cd cfg/php-fpm-5.6

Create new conf file
host> touch www_server.conf

Now add the following content to the file:

Listing 2: www_server.conf

[www]
; Pool config
pm = dynamic
pm.max_children = 10
pm.start_servers = 3
pm.min_spare_servers = 2
pm.max_spare_servers = 5

Important: Note the [www] section.

In order to apply the changes you need to restart the Devilbox.

52.2.3 Set non-overwritable php.ini values for PHP 7.0

You can also set php.ini values that cannot be overwritten by php.ini or the ini_set() function of PHP. This
might be useful to make sure a specific value is enforced and will not be changed by some PHP frameworks on-the-fly.

This is achieved by php_admin_flag and php_admin_value that are parsed directly to PHP-FPM.

See also:

https://secure.php.net/manual/en/install.fpm.configuration.php

The following example will disable built-in PHP functions globally and non-overwriteable for PHP 7.0.

Navigate to the Devilbox directory
host> cd path/to/devilbox

Navigate to PHP 7.0 config directory
host> cd cfg/php-fpm-7.0

Create new conf file
host> touch admin.conf

Now add the following content to the file:

Listing 3: admin.conf

[www]
php_admin_value[disable_functions] = link,symlink,popen,exec,system,shell_exec

Important: Note the [www] section.

52.2. Examples 241

https://secure.php.net/manual/en/install.fpm.configuration.php

devilbox Documentation

Important: This kind of setting only has affects PHP files served through PHP-FPM, when you run php on the
command line, this setting will be ignored.

Important: Be aware that none of your projects can use the above disabled functions anymore. They will simply not
exist for PHP 7.0 after that configuration took affect.

In order to apply the changes you need to restart the Devilbox.

242 Chapter 52. php-fpm.conf

CHAPTER 53

my.cnf

my.ini changes are global to all projects, but will only affect the currently selected MySQL version.

Important: When using Docker Toolbox on Windows, *.cnf files must have read-only file permissions, otherwise
they are not sourced by the MySQL server.

Make sure to chmod 0444 *.cnf after adding your values.

Table of Contents

• General

• Examples

– Change key_buffer_size for MySQL 5.5

– Change timeout and packet size for PerconaDB 5.7

53.1 General

You can set custom MySQL options via your own defined my.cnf files for each version separately. See the directory
structure for MySQL configuration directories inside ./cfg/ directory:

host> ls -l path/to/devilbox/cfg/ | grep -E 'mysql|mariadb|percona'

drwxr-xr-x 2 cytopia cytopia 4096 Mar 5 21:53 mariadb-10.0/
drwxr-xr-x 2 cytopia cytopia 4096 Mar 5 21:53 mariadb-10.1/
drwxr-xr-x 2 cytopia cytopia 4096 Mar 5 21:53 mariadb-10.2/
drwxr-xr-x 2 cytopia cytopia 4096 Mar 5 21:53 mariadb-10.3/
drwxr-xr-x 2 cytopia cytopia 4096 Mar 5 21:53 mysql-5.5/
drwxr-xr-x 2 cytopia cytopia 4096 Mar 5 21:53 mysql-5.6/

(continues on next page)

243

devilbox Documentation

(continued from previous page)

drwxr-xr-x 2 cytopia cytopia 4096 Mar 5 21:53 mysql-5.7/
drwxr-xr-x 2 cytopia cytopia 4096 Mar 5 21:53 mysql-8.0/
drwxr-xr-x 2 cytopia cytopia 4096 Mar 5 21:53 percona-5.5/
drwxr-xr-x 2 cytopia cytopia 4096 Mar 5 21:53 percona-5.6/
drwxr-xr-x 2 cytopia cytopia 4096 Mar 5 21:53 percona-5.7/

Customization is achieved by placing a file into cfg/mysql-X.X/, cfg/mariadb-X.X/ or cfg/
percona-X-X (where X.X stands for your MySQL version). The file must end by .cnf in order to be sourced
by the MySQL server.

Each of the MySQL cnf configuration directories already contain an example file: devilbox-custom.
cnf-example, that can simply be renamed to devilbox-custom.cnf. This file holds some example values
that can be adjusted or commented out.

In order for the changes to be applied, you will have to restart the Devilbox.

53.2 Examples

53.2.1 Change key_buffer_size for MySQL 5.5

The following examples shows you how to change the key_buffer_size of MySQL 5.5 to 16 MB.

Navigate to the Devilbox directory
host> cd path/to/devilbox

Navigate to MySQL 5.5 config directory
host> cd cfg/mysql-5.5

Create new cnf file
host> touch key_buffer_size.cnf

Now add the following content to the file:

Listing 1: memory_limit.cnf

[mysqld]
key_buffer_size=16M

In order to apply the changes you need to restart the Devilbox. You can validate that the changes have taken place by
visiting the Devilbox intranet MySQL info page.

53.2.2 Change timeout and packet size for PerconaDB 5.7

The following examples shows you how to change the wait_timeout and max_allowed_packet of PerconaDB 5.7

Navigate to the Devilbox directory
host> cd path/to/devilbox

Navigate to PerconaDB 5.7 config directory
host> cd cfg/percona-5.7

Create new ini file
host> touch timeouts.cnf

244 Chapter 53. my.cnf

https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_key_buffer_size
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_wait_timeout
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_max_allowed_packet

devilbox Documentation

Now add the following content to the file:

Listing 2: timeouts.cnf

[mysqld]
max_allowed_packet=256M
wait_timeout = 86400

In order to apply the changes you need to restart the Devilbox. You can validate that the changes have taken place by
visiting the Devilbox intranet MySQL info page.

53.2. Examples 245

devilbox Documentation

246 Chapter 53. my.cnf

CHAPTER 54

bashrc.sh

Each PHP container is using bash as its default shell. If you do not like the way it is currently configured, you can add
your own configuration files to overwrite settings.

See also:

Work inside the container

Table of Contents

• Directory mapping

• Examples

– Custom aliases

– Custom vim configuration

54.1 Directory mapping

Inside the Devilbox git directory you will find a directory called bash/. Every file inside this directory ending by
*.sh will be source by your bash shell, allowing for a customized bash configuration. All files not ending by *.sh
will be ignored and can be used to create config files for other programs.

The bash/ directory will be mounted into the PHP container to /etc/bashrc-devilbox.d/.

Host OS path Docker path
./bash/ /etc/bashrc-devilbox.d/

247

devilbox Documentation

54.2 Examples

54.2.1 Custom aliases

Let’s say you want to add some custom shell aliases. All you have to do is create any file ending by .sh and place it
into the ./bash/ directory:

Navigate to the Devilbox git directory
host> cd path/to/devilbox

Create a new file
host> touch ./bash/aliases.sh

Add some content to the file
host> vi ./bash/aliases.sh

Listing 1: ./bash/aliases.sh

alias l='ls -a'
alias ll='ls -al'
alias www='cd /shared/httpd'

54.2.2 Custom vim configuration

The .vimrc is usually place directly in the users home directory and the Devilbox does not offer any mounts directly
to that directory, however you can use a trick with shell aliases to use vim with a different config file by default.

First of all, place your favorite .vimrc into the ./bash/ directory

Navigate to the Devilbox git directory
host> cd path/to/devilbox

Copy your vim config to the ./bash directory
host> cp ~/.vimrc bash/.vimrc

Right now, this is not going to do anything and as .vimrc is not ending by .sh it is also ignored by the shell itself.
What is now left to do, is make vim itself always use this config file.

As you can see from the above stated directory mapping, the .vimrc file will end up under: /etc/
bashrc-devilbox.d/.vimrc inside the PHP container, so just create a shell alias for vim that will always
use this file:

Navigate to the Devilbox git directory
host> cd path/to/devilbox

Create a new file
host> touch ./bash/vim.sh

Add your vim alias
host> vi ./bash/vim.sh

248 Chapter 54. bashrc.sh

devilbox Documentation

Listing 2: ./bash/vim.sh

alias vim='vim -u /etc/bashrc-devilbox.d/.vimrc

Whenever you start vim inside any PHP container, it will automatically use the provided vim configuration file.

This trick will work for all tools that require configuration files.

54.2. Examples 249

devilbox Documentation

250 Chapter 54. bashrc.sh

CHAPTER 55

Docker and Docker Compose

This section gives you some detail about installing Docker and Docker Compose on your operating system.

• Install Docker

– Docker on Linux

– Docker on Windows

– Docker on MacOS

– docker user group

• Install Docker Compose

• Checklist

55.1 Install Docker

See also:

Docker Toolbox Note, this section refers to native Docker, which is the recommended version. If however, you need
to install Docker Toolbox (such as on Windows 7 or older Macs), have a look at this page.

Warning: The minimum required Docker version is 1.12.0. Make sure not to install older versions.

55.1.1 Docker on Linux

Refer to the official Docker for Linux documentation for how to install Docker on your specific Linux distribution.

251

https://docs.docker.com/engine/installation/#supported-platforms

devilbox Documentation

55.1.2 Docker on Windows

Refer to the official Docker for Windows documentation for how to install Docker on Windows.

55.1.3 Docker on MacOS

Refer to the official Docker for Mac documentation for how to install Docker on MacOS.

55.1.4 docker user group

Docker itself requires super user privileges which is granted to a system wide group called docker. After having
installed Docker on your system, ensure that your local user is assigned to the docker group. Check this via groups
or id command.

host> id

uid=1000(cytopia) gid=1000(cytopia) groups=1000(cytopia),999(docker)

55.2 Install Docker Compose

Warning: The minimum required Docker Compose version is 1.9.0. Make sure not to install older versions.

The Docker documentation provides various ways to install Docker Compose for all supported operating systems
and is quite extensive and straight forward. Follow their steps here: Install Docker Compose.

55.3 Checklist

1. Docker is installed at the minimum required version

2. Your user is part of the docker group

3. Docker Compose is installed at the minimum required version

252 Chapter 55. Docker and Docker Compose

https://docs.docker.com/docker-for-windows/install/
https://docs.docker.com/docker-for-mac/install/
https://docs.docker.com/compose/install/#install-compose

CHAPTER 56

Docker Toolbox

• Installation

– Docker Toolbox on Windows

– Docker Toolbox on MacOS

– Docker Compose

• Additional steps

– Listening address

– Port forwarding

– Auto-DNS

• Checklist

56.1 Installation

Warning: The minimum required Docker Toolbox version is 1.12.0. Make sure not to install older
versions.

56.1.1 Docker Toolbox on Windows

Refer to the official Docker Toolbox on Windows documentation for how to install Docker Toolbox on Windows.

56.1.2 Docker Toolbox on MacOS

Refer to the official Docker Toolbox on MacOS documentation for how to install Docker Toolbox on MacOS.

253

https://docs.docker.com/toolbox/toolbox_install_windows/
https://docs.docker.com/toolbox/toolbox_install_mac/

devilbox Documentation

56.1.3 Docker Compose

When installing Docker Compose, make sure you do that inside the virtual machine.

See also:

Install Docker Compose Have a look at this page to help you install Docker Compose for your operating system.

56.2 Additional steps

Docker Toolbox is a legacy solution to bring Docker to systems which don’t natively support Docker itself. This
is achieved by starting a virtualized Linux (e.g.: on VirtualBox) and have Docker run inside.

You don’t have to take care about setting up the virtual machine, this is done automatically with the provided setup
file (Windows and MacOS).

This however has several disadvantages as the forwarded Docker ports are only visible inside the virtualized Linux
and not on the host computer. Therefore the web server port cannot be reached on your host machine and you are not
able to view any projects.

56.2.1 Listening address

First thing you need to make sure is that the LOCAL_LISTEN_ADDR variable from your .env file is empty. When
it is empty all services bind to all IP addresses inside the virtual machine and thus being able to be seen from outside
(your host operating system).

You can verifiy that the variable is actually empty by checking your .env file:

host> grep ^LOCAL_LISTEN_ADDR .env

LOCAL_LISTEN_ADDR=

56.2.2 Port forwarding

Additionally I would suggest that you port-forward the virtual machines port 80 (which itself points to the docker
container inside) to your host computers 127.0.0.1 address. This way you can reach the devilbox via http://
127.0.0.1 or http://localhost.

If you do not port-forward it to your host machines localhost, you will have to adjust all project DNS entries that are
described in this documentation to go to 127.0.0.1 to the IP address of your virtual machine.

56.2.3 Auto-DNS

I am currently not aware that Auto-DNS will work with Docker Toolbox. If you are willing to spent some time
there, let me know. There is currently an open ticket which is addressing this: https://github.com/cytopia/devilbox/
issues/101

56.3 Checklist

1. Docker Toolbox is installed at minimum required version

254 Chapter 56. Docker Toolbox

https://github.com/cytopia/devilbox/issues/101
https://github.com/cytopia/devilbox/issues/101

devilbox Documentation

2. Docker Compose is installed inside the virtual machine at minimum required version

3. LOCAL_LISTEN_ADDR is empty in the .env file

56.3. Checklist 255

devilbox Documentation

256 Chapter 56. Docker Toolbox

CHAPTER 57

Available container

Note:

Start the Devilbox Find out how to start some or all container.

The following table gives you an overview about all container that can be started. When doing a selective start, use
the Name value to specify the container to start up.

Container Name Hostname IP Address
DNS bind bind 172.16.238.100
PHP php php 172.16.238.10
Apache, Nginx httpd httpd 172.16.238.11
MySQL, MariaDB, PerconaDB mysql mysql 172.16.238.12
PostgreSQL pgsql pgsql 172.16.238.13
Redis redis redis 172.16.238.14
Memcached memcd memcd 172.16.238.15
MongoDB mongo mongo 172.16.238.16

257

devilbox Documentation

258 Chapter 57. Available container

CHAPTER 58

Available tools

Each PHP container version brings the same tools, so you can safely switch versions without having to worry to have
less or more tools available.

See also:

Work inside the container

The PHP container is your workhorse and these are your tools:

Note: If you are in need of other tools, open up an issue at Github and ask for it, this can usually be implemented
very quickly.

See also:

If you ever feel those tools are out-dated, simply update your Docker images. Docker images are built every night to
ensure latest tools and security patches: Update Docker images

259

https://github.com/cytopia/devilbox/issues

devilbox Documentation

260 Chapter 58. Available tools

CHAPTER 59

Remove stopped container

59.1 Why should I?

If you simply docker-compose stop in order to stop all containers, they are still preserved in the docker ps
-a process list and still have state.

In case you change any path variables inside the .env file (or silently due to git updates), you need to completely
re-create the state.

This is done by first fully removing the container and then simply starting it again.

59.2 How to do it?

host> docker-compose stop
host> docker-compose rm

59.3 When to do it?

Whenever path values inside the .env file change.

261

devilbox Documentation

262 Chapter 59. Remove stopped container

CHAPTER 60

Syncronize container permissions

One main problem with a running Docker container is to synchronize the ownership of files in a mounted volume
in order to preserve security (Not having to use chmod 0777 or root user).

This problem will be addressed below by using a PHP-FPM docker image as an example.

60.1 Unsyncronized permissions

Consider the following directory structure of a mounted volume. Your hosts computer uid/gid are 1000 which does
not have a corresponding user/group within the container. Fortunately the tmp/ directory allows everybody to create
new files in it, because its permissions are 0777.

[Host] | [Container]
--
→˓----
$ ls -l | $ ls -l
-rw-r--r-- user group index.php | -rw-r--r-- 1000 1000 index.php
drwxrwxrwx user group tmp/ | drwxrwxrwx 1000 1000 tmp/

Your web application might now have created some temporary files (via the PHP-FPM process) inside the tmp/
directory:

[Host] | [Container]
--
→˓----
$ ls -l tmp/ | $ ls -l tmp/
-rw-r--r-- 96 96 _tmp_cache01.php | -rw-r--r-- www www _tmp_cache01.php
-rw-r--r-- 96 96 _tmp_cache02.php | -rw-r--r-- www www _tmp_cache01.php

On the Docker container side everything is still fine, but on your host computers side, those files now show a user id
and group id of 96, which is in fact the uid/gid of the PHP-FPM process running inside the container. On the host side
you have just lost write/delete access to those files and will now have to use sudo in order to delete/edit those files.

263

devilbox Documentation

60.2 It gets even worse

Consider your had created the tmp/ directory on your host only with 0775 permissions:

[Host] | [Container]
--
→˓----
$ ls -l | $ ls -l
-rw-r--r-- user group index.php | -rw-r--r-- 1000 1000 index.php
drwxrwxr-x user group tmp/ | drwxrwxr-x 1000 1000 tmp/

If your web application now wants to create some temporary files (via the PHP-FPM process) inside the tmp/ direc-
tory, it will fail due to lack of permissions.

60.3 The solution

To overcome this problem, it must be made sure that the PHP-FPM process inside the container runs under the same
uid/gid as your local user that mouns the volumes and also wants to work on those files locally. However, you never
know during Image build time what user id this would be. Therefore it must be something that can be changed during
startup of the container.

This is achieved in the Devilbox’s containers by two environment variables that can be provided during startup in order
to change the uid/gid of the PHP-FPM user prior starting up PHP-FPM process.

$ docker run -e NEW_UID=1000 -e NEW_GID=1000 -it devilbox/php-fpm:7.2-work
[INFO] Changing user 'devilbox' uid to: 1000
root $ usermod -u 1000 devilbox
[INFO] Changing group 'devilbox' gid to: 1000
root $ groupmod -g 1000 devilbox
[INFO] Starting PHP 7.2.0 (fpm-fcgi) (built: Oct 30 2017 12:05:19)

When NEW_UID and NEW_GID are provided to the startup command, the container will do a usermod and
groupmod prior starting up in order to assign new uid/gid to the PHP-FPM user. When the PHP-FPM process
finally starts up it actually runs with your local system user and making sure permissions will be in sync from now on.

Note: To tackle this on the PHP-FPM side is only half a solution to the problem. The same applies to a web
server Docker container when you offer file uploads. They will be uploaded and created by the web servers uid/gid.
Therefore the web server itself must also provide the same kind of solution.

264 Chapter 60. Syncronize container permissions

CHAPTER 61

FAQ

Find common questions and answers here.

See also:

Troubleshooting

Table of Contents

• General

– Are there any differences between native Docker and Docker Toolbox?

– Why are mounted MySQL data directories separated by version?

– Why are mounted PostgreSQL data directories separated by version?

– Why are mounted MongoDB data directories separated by version?

– Why do the user/group permissions of log/ or cfg/ directories show 1000?

– Can I not just comment out the service in the .env file?

– Are there any required services that must/will always be started?

– What PHP Modules are available?

• Configuration

– Can I load custom PHP modules without rebuilding the Docker image?

– Can I load custom Apache modules without rebuilding the Docker image?

– Can I change the MySQL root password?

– Can I change php.ini?

– Can I change my.cnf?

– Can I change the project virtual host domain .loc?

265

devilbox Documentation

– Can I just start PHP and MySQL instead of all container?

– Do I always have to edit /etc/hosts for new projects?

• Compatibility

– Does it work with CakePHP?

– Does it work with Drupal?

– Does it work with Joomla?

– Does it work with Laravel?

– Does it work with Phalcon?

– Does it work with Symfony?

– Does it work with Wordpress?

– Does it work with Yii?

– Does it work with Zend?

61.1 General

61.1.1 Are there any differences between native Docker and Docker Toolbox?

Yes, read Docker Toolbox to find out more.

61.1.2 Why are mounted MySQL data directories separated by version?

This is just a pre-caution. Imagine they would link to the same datadir. You start the Devilbox with mysql 5.5, create
a database and add some data. Now you decide to switch to mysql 5.7 and restart the devilbox. The newer mysql
version will probably upgrade the data leaving it unable to start with older mysql versions.

61.1.3 Why are mounted PostgreSQL data directories separated by version?

See: Why are mounted MySQL data directories separated by version?

61.1.4 Why are mounted MongoDB data directories separated by version?

See: Why are mounted MySQL data directories separated by version?

61.1.5 Why do the user/group permissions of log/ or cfg/ directories show 1000?

Uid and Gid are set to 1000 by default. You can alter them to match the uid/gid of your current user. Open the .env
file and change the sections NEW_UID and NEW_GID. When you start up the devilbox, the PHP container will use
these values for its user.

See also:

NEW_UID and NEW_GID

266 Chapter 61. FAQ

devilbox Documentation

61.1.6 Can I not just comment out the service in the .env file?

No, don’t do this. This will lead to unexpected behaviour (different versions will be loaded). The .env file allows
you to configure the devilbox, but not to start services selectively.

61.1.7 Are there any required services that must/will always be started?

Yes. http and php will automatically always be started (due to dependencies inside docker-compose.yml) if
you specify them or not.

61.1.8 What PHP Modules are available?

The Devilbox is a development stack, so it is made sure that a lot of PHP modules are available out of the box in order
to work with many different frameworks.

Available PHP modules can be seen at the PHP Docker image repository.

See also:

https://github.com/devilbox/docker-php-fpm

61.2 Configuration

61.2.1 Can I load custom PHP modules without rebuilding the Docker image?

Yes, see custom_php_modules

61.2.2 Can I load custom Apache modules without rebuilding the Docker image?

Yes, see custom_apache_modules

61.2.3 Can I change the MySQL root password?

Yes, you can change the password of the MySQL root user. If you do so, you must also set the new password in your
.env file. See MYSQL_ROOT_PASSWORD for how to change this value.

61.2.4 Can I change php.ini?

Yes, php.ini directives can be changed for each PHP version separately. See php.ini

61.2.5 Can I change my.cnf?

Yes, my.cnf directives can be changed for each MySQL version separately. See my.cnf

61.2. Configuration 267

https://github.com/devilbox/docker-php-fpm

devilbox Documentation

61.2.6 Can I change the project virtual host domain .loc?

Yes, the .env variable TLD_SUFFIX can be changed to whatever domain or subdomain you want. See TLD_SUFFIX.

Warning: Be aware not to use dev or localhost. See TLD_SUFFIX for more details.

61.2.7 Can I just start PHP and MySQL instead of all container?

Yes, every Docker container is optional. The Devilbox allows for selective startup. See Start the Devilbox.

61.2.8 Do I always have to edit /etc/hosts for new projects?

You need a valid DNS entry for every project that points to the Httpd server. As those records don’t exists by default,
you will have to create them. However, the Devilbox has a bundled DNS server that can automate this for you. The
only thing you have to do for that to work is to add this DNS server’s IP address to your /etc/resolv.conf. See
Auto-DNS for detailed instructions.

61.3 Compatibility

61.3.1 Does it work with CakePHP?

Yes, see Setup CakePHP

61.3.2 Does it work with Drupal?

Yes, see Setup Drupal

61.3.3 Does it work with Joomla?

Yes, see Setup Joomla

61.3.4 Does it work with Laravel?

Yes, see Setup Laravel

61.3.5 Does it work with Phalcon?

Yes, see Setup Phalcon

61.3.6 Does it work with Symfony?

Yes, see Setup Symfony

268 Chapter 61. FAQ

devilbox Documentation

61.3.7 Does it work with Wordpress?

Yes, see Setup Wordpress

61.3.8 Does it work with Yii?

Yes, see Setup Yii

61.3.9 Does it work with Zend?

Yes, see Setup Zend

61.3. Compatibility 269

devilbox Documentation

270 Chapter 61. FAQ

CHAPTER 62

Troubleshooting

This section will contain common problems and how to resolve them. It will grow over time once there are more
issues reported.

See also:

FAQ

Table of Contents

• Invalid bind mount spec

• [Warning] World-writable config file ‘/etc/mysql/docker-default.d/my.cnf’ is ignored

62.1 Invalid bind mount spec

This error might occure after changing the path of MySQL, PgSQL, Mongo or any other data directory.

When you change any paths inside .env that affect Docker mountpoints, the container need to be removed and re-
created during the next startup. Removing the container is sufficient as they will always be created during run if they
don’t exist.

In order to remove the container do the following:

host> cd path/to/devilbox
host> docker-compose stop

Remove the stopped container (IMPORTANT!)
After the removal it will be re-created during next run
host> docker-compose rm -f

See also:

Remove stopped container

271

devilbox Documentation

62.2 [Warning] World-writable config file ‘/etc/mysql/docker-
default.d/my.cnf’ is ignored

This warning might occur when using Docker Toolbox on Windows and trying to apply custom MySQL configuration
files. This will also result in the configuration file not being source by the MySQL server.

To fix this issue, you will have to change the file permission of your custom configuration files to read-only by applying
the following chmod command.

Nagivate to devilbox git directory
host> cd path/to/devilbox

Navigate to the MySQL config directory (e.g.: MySQL 5.5)
host> cd cfg/mysql-5.5

Make cnf files read only
host> chmod 0444 *.cnf

See also:

• my.cnf

• https://github.com/cytopia/devilbox/issues/212

272 Chapter 62. Troubleshooting

https://github.com/cytopia/devilbox/issues/212

CHAPTER 63

Blogs, Videos and Use-cases

63.1 Official videos

The official videos might be a bit old, but are still valid and a good start, even if the intranet UI has changed a bit.

63.2 Blog posts

The following shows a list of blogs that give a nice and objective introduction to the Devilbox.

Title Language
Using Devilbox For Local WordPress Development In Docker English
Devilbox: Lokaler Webserver mit Apache, PHP und MySQL im Docker Container German

273

https://www.youtube.com/watch?v=reyZMyt2Zzo
https://www.youtube.com/watch?v=e-U-C5WhxGY
https://deliciousbrains.com/devilbox-local-wordpress-development-docker
https://blog.moritzkanzler.de/devilbox-lokaler-webserver-mit-apache-php-und-mysql-im-docker-container/

devilbox Documentation

63.3 Use-cases

63.3.1 Joomla’s Continuous Integration

Joomla has created a PR Testing Platform as their Google Summer of Code 2017 project using a modified version of
the Devilbox.

63.4 Add your story

Have you written a valuable blog about the Devilbox or do you have a fancy use-case? If so, submit a pull request and
add it.

274 Chapter 63. Blogs, Videos and Use-cases

https://docs.joomla.org/PR_Testing_Platform
https://docs.joomla.org/GSOC_2017

CHAPTER 64

Artwork

The Devilbox provides official logos and banners to be used for articles, blogs and others by the following license:

Images are available as opaque and transparent versions:

If you feel like designing a new logo for the Devilbox or just want to grab a copy of any of the images go to its artwork
repository on github.

See also:

https://github.com/devilbox/artwork

275

https://github.com/devilbox/artwork
https://github.com/devilbox/artwork

	Read first
	Shell commands
	Checklists
	Where to start?

	Features
	Projects
	Service and version choice
	Configuration
	Intranet
	Dockerized
	Others

	Install the Devilbox
	Supported OS
	Requirements
	Download the devilbox
	Create .env file
	Adjust .env file
	Checklist

	Update the Devilbox
	Update git repository
	Update Docker images
	Checklist git repository
	Checklist Docker images

	Start the Devilbox
	Start all container
	Start some container
	Open Devilbox intranet
	Checklist

	Directory overview
	Data directory
	Project directory
	Docroot directory
	Domain suffix
	Making sense of it
	Checklist

	Create your first project
	Step 1: visit Intranet vhost page
	Step 2: create a project directory
	Step 3: create a docroot directory
	Step 4: create a DNS entry
	Step 5: Visit your project
	Step 6: Create a hello world
	Checklist

	Read log files
	Mounted logs
	Docker logs
	Checklist

	Email catch-all
	Enter the PHP container
	How to enter
	How to become root
	Tools
	Advanced
	Checklist

	The Intranet
	Devilbox tools
	Third-party tools
	Settings
	Checklist

	Best practice
	Move data out of Devilbox directory
	PHP project hostname settings
	Timezone

	Backup and restore MySQL
	Backup
	Restore

	Backup and restore PostgreSQL
	Backup
	Restore

	Backup and restore MongoDB
	Backup
	Restore

	Communicating with external hosts
	Prerequisites
	Make DNS available to the Devilbox
	Further reading

	Add your own Docker image
	Prerequisites
	What information do you need?
	How to add a new service?
	How to start the new service?
	Further reading

	Overwrite existing Docker image
	Prerequisites
	What information do you need?
	How to overwrite a service?
	Further reading

	Adding Sub domains
	Single sub domain for one project
	Multiple sub domains for one project

	Change container versions
	Change PHP version
	Change whatever version
	Checklist

	Work inside the container
	Enter the container
	Inside the container
	Leave the container
	Host to Container mappings
	Checklist

	Enable Xdebug
	Enable Xdebug
	Configure your IDE

	Custom environment variables
	Add custom environment variables
	Use custom environment variables

	Static Code Analysis
	Awesome-ci
	PHPCS
	ESLint

	Setup CakePHP
	Overview
	Walk through

	Setup Drupal
	Overview
	Walk through

	Setup Joomla
	Overview
	Walk through

	Setup Laravel
	Overview
	Walk through

	Setup Phalcon
	Overview
	Walk through

	Setup Symfony
	Overview
	Walk through

	Setup Wordpress
	Overview
	Walk through

	Setup Yii
	Overview
	Walk through

	Setup Zend
	Overview
	Walk through

	DNS records
	Examples
	Creating DNS records
	Verify

	Customized virtual host (vhost-gen)
	vhost-gen
	Templates explained
	Apply Changes
	Further readings

	HTTPS (SSL)
	TL;DR
	How does it work
	Import the CA into your browser
	Further Reading

	Web server
	Features
	Information
	Configuration

	PHP
	MySQL
	MongoDB
	Redis
	Memcached
	BIND
	Devilbox Intranet
	Auto-DNS
	Native Docker
	Docker Toolbox

	.env file
	Core settings
	Intranet settings
	Docker image versions
	Docker host mounts
	Docker host ports
	Container settings

	docker-compose.yml
	docker-compose.override.yml
	Create docker-compose.override.yml
	Further reading

	apache.conf
	General
	Examples

	nginx.conf
	General
	Examples

	php.ini
	General
	Examples

	php-fpm.conf
	General
	Examples

	my.cnf
	General
	Examples

	bashrc.sh
	Directory mapping
	Examples

	Docker and Docker Compose
	Install Docker
	Install Docker Compose
	Checklist

	Docker Toolbox
	Installation
	Additional steps
	Checklist

	Available container
	Available tools
	Remove stopped container
	Why should I?
	How to do it?
	When to do it?

	Syncronize container permissions
	Unsyncronized permissions
	It gets even worse
	The solution

	FAQ
	General
	Configuration
	Compatibility

	Troubleshooting
	Invalid bind mount spec
	[Warning] World-writable config file ‘/etc/mysql/docker-default.d/my.cnf’ is ignored

	Blogs, Videos and Use-cases
	Official videos
	Blog posts
	Use-cases
	Add your story

	Artwork

