

devilbox documentation

[image: _images/banner.png]
The Devilbox is a modern dockerized LAMP and MEAN stack for local development on Linux, MacOS
and Windows.

It allows you to have an unlimited number of projects ready without having to install
any external software and without having to configure any virtual hosts. As well as providing a
very flexible development stack that you can run offline. (Internet is only required to initially
pull docker container).

The only thing you will have to do is to create a new directory on the filesystem and your virtual
host is ready to be served with your custom domain.

Important

	Read first

	Ensure you have read this document to understand how this documentation works.

About

	Read first
	Shell commands

	Checklists

	Where to start?

	Features
	Projects

	Service and version choice

	Configuration

	Intranet

	Dockerized

	Others

Getting started

	1. Install the Devilbox
	1.1. Supported OS

	1.2. Requirements

	1.3. Download the devilbox

	1.4. Create .env file

	1.5. Adjust .env file

	1.6. Checklist

	2. Update the Devilbox
	2.1. Update git repository

	2.2. Update Docker images

	2.3. Checklist git repository

	2.4. Checklist Docker images

	3. Start the Devilbox
	3.1. Start all container

	3.2. Start some container

	3.3. Open Devilbox intranet

	3.4. Checklist

	4. Directory overview
	4.1. Data directory

	4.2. Project directory

	4.3. Docroot directory

	4.4. Domain suffix

	4.5. Making sense of it

	4.6. Checklist

	5. Create your first project
	5.1. Step 1: visit Intranet vhost page

	5.2. Step 2: create a project directory

	5.3. Step 3: create a docroot directory

	5.4. Step 4: create a DNS entry

	5.5. Step 5: Visit your project

	5.6. Step 6: Create a hello world

	5.7. Checklist

	6. Read log files
	6.1. Mounted logs

	6.2. Docker logs

	6.3. Checklist

	7. Email catch-all

	8. Enter the PHP container
	8.1. How to enter

	8.2. How to become root

	8.3. Tools

	8.4. Advanced

	8.5. Checklist

	9. The Intranet
	9.1. Devilbox tools

	9.2. Third-party tools

	9.3. Settings

	9.4. Checklist

	10. Best practice
	10.1. Move data out of Devilbox directory

	10.2. PHP project hostname settings

	10.3. Timezone

Maintenance

	Backup and restore MySQL
	Backup

	Restore

	Backup and restore PostgreSQL
	Backup

	Restore

	Backup and restore MongoDB
	Backup

	Restore

Tutorials

	Communicating with external hosts
	Prerequisites

	Make DNS available to the Devilbox

	Further reading

	Add your own Docker image
	Prerequisites

	What information do you need?

	How to add a new service?

	How to start the new service?

	Further reading

	Overwrite existing Docker image
	Prerequisites

	What information do you need?

	How to overwrite a service?

	Further reading

	Adding Sub domains
	Single sub domain for one project

	Multiple sub domains for one project

	Change container versions
	Change PHP version

	Change whatever version

	Checklist

	Work inside the container
	Enter the container

	Inside the container

	Leave the container

	Host to Container mappings

	Checklist

	Enable Xdebug
	Enable Xdebug

	Configure your IDE

	Custom environment variables
	Add custom environment variables

	Use custom environment variables

	Static Code Analysis
	Awesome-ci

	PHPCS

	ESLint

Examples

	Setup CakePHP
	Overview

	Walk through

	Setup Drupal
	Overview

	Walk through

	Setup Joomla
	Overview

	Walk through

	Setup Laravel
	Overview

	Walk through

	Setup Phalcon
	Overview

	Walk through

	Setup Symfony
	Overview

	Walk through

	Setup Wordpress
	Overview

	Walk through

	Setup Yii
	Overview

	Walk through

	Setup Zend
	Overview

	Walk through

Project configuration

	DNS records
	Examples

	Creating DNS records

	Verify

	Customized virtual host (vhost-gen)
	vhost-gen

	Templates explained

	Apply Changes

	Further readings

Global configuration

	HTTPS (SSL)
	TL;DR

	How does it work

	Import the CA into your browser

	Further Reading

	Web server
	Features

	Information

	Configuration

	PHP

	MySQL

	MongoDB

	Redis

	Memcached

	BIND

	Devilbox Intranet

	Auto-DNS
	Native Docker

	Docker Toolbox

Configuration files

	.env file
	Core settings

	Intranet settings

	Docker image versions

	Docker host mounts

	Docker host ports

	Container settings

	docker-compose.yml

	docker-compose.override.yml
	Create docker-compose.override.yml

	Further reading

	apache.conf
	General

	Examples

	nginx.conf
	General

	Examples

	php.ini
	General

	Examples

	php-fpm.conf
	General

	Examples

	my.cnf
	General

	Examples

	bashrc.sh
	Directory mapping

	Examples

Readings

	Docker and Docker Compose
	Install Docker

	Install Docker Compose

	Checklist

	Docker Toolbox
	Installation

	Additional steps

	Checklist

	Available container

	Available tools

	Remove stopped container
	Why should I?

	How to do it?

	When to do it?

	Syncronize container permissions
	Unsyncronized permissions

	It gets even worse

	The solution

Support

	FAQ
	General

	Configuration

	Compatibility

	Troubleshooting
	Invalid bind mount spec

	[Warning] World-writable config file ‘/etc/mysql/docker-default.d/my.cnf’ is ignored

	Blogs, Videos and Use-cases
	Official videos

	Blog posts

	Use-cases

	Add your story

	Artwork

Read first

Find some useful information and tips for the documentation itself.

Shell commands

Important

All shell commands in this documentation use two different formats:

	This one indicates that the command should be executed on your host operating system. (When copying commands, do not copy the host> part).

host> command

	This one indicates that the command should be executed inside the currently selected PHP container. (When copying commands, do not copy the php> part).

php> command

Checklists

Note

Most guids and tutorials provide a Checklist at the very bottom.
You can as well jump to it and quickly see if you have done everything already.

Where to start?

On the left menu you will find a GETTING STARTED section, read through all of them to get
a basic theoretical and practical understanding about the Devilbox.

There is also a Blogs, Videos and Use-cases section that might be useful as an additional crash-course.

Features

This section gives you a brief overview about the available features.

Table of Contents

	Projects

	Unlimited projects

	Automated virtual hosts

	Automated DNS records

	Email catch-all

	Log files

	Virtual host domains

	Service and version choice

	Selective start

	Version choice

	LAMP and MEAN stack

	Configuration

	Global configuration

	Version specific configuration

	Project specific configuration

	Intranet

	Command & Control Center

	Third-party tools

	Dockerized

	Portable

	Built nightly

	Ships popular development tools

	Work inside the container

	Work inside and outside the container interchangeably

	Others

	Work offline

	Hacking

Projects

Unlimited projects

The number of projects you can add are so to speak unlimited. Simply add new project directories
and they become automatically available in no time.

Automated virtual hosts

Creating a new project is literally done by creating a new directory on the file system.
Everything else is automatically taken care of in the background. Virtual hosts are added
instantly without having to restart any services.

Automated DNS records

The built-in DNS server will automatically make any DNS record available to your host system by
using a wild-card DNS record.

Email catch-all

All outgoing emails originating from your projects are intercepted, stored locally and
can be viewed within the bundled intranet. This removes the need to create developer DNS records
in /etc/hosts.

Log files

Log files for every service are available. Either in the form of Docker logs or as actual log files
mounted into the Devilbox git directory. The web and PHP server offer log files for each project
separetely.

Virtual host domains

Each of your virtual host will have its own domain. TLD can be freely chosen, such as *.loc,
*.local, *.com, *.org or whatever you require.

Service and version choice

Selective start

Run only the Docker container you actually need, but be able to reload others on the fly once
they are needed. So you could first startup PHP and MySQL only and in case you would require
a Redis server you can attach it later to the Devilbox stack without having to restart anything.

Version choice

Each provided service (such as PHP, MySQL, PostgreSQL, etc) comes in many different versions.
You can enable any combination that matches your perfect development stack.

LAMP and MEAN stack

Run a full LAMP stack with Apache or Nginx and even attach MEAN stack services such as MongoDB.

Configuration

Global configuration

All services can be configured globally by including your very own customized
php.ini, php-fpm.conf, my.cnf, nginx.conf. apache.conf and other
configuration files.

Version specific configuration

Each version of PHP can have its own php.ini and php-fpm.conf files,
each version of MySQL, MariaDB or PerconaDB can have its own my.cnf files,
each Apache…, each Nginx… you get the idea.

Project specific configuration

Even down to projects, the Devilbox allows for full customization when it comes to virtual host
settings via vhost-gen [https://github.com/devilbox/vhost-gen].

Intranet

Command & Control Center

The intranet is your Command & Control Center showing you all applied settings, mount points,
port exposures, hostnames and any errors including how they can be resolved.

Third-party tools

Mandatory web projects are also shipped:
phpMyAdmin [https://www.phpmyadmin.net],
Adminer [https://www.adminer.org] and
OpcacheGui [https://github.com/amnuts/opcache-gui] as well as a web GUI to view all sent emails.

Dockerized

Portable

Docker container run on Linux, Windows and MacOS, so does the Devilbox. This ensures that no
matter what operating system you are currently on, you can always run your development stack.

Built nightly

Docker images (at least official Devilbox Docker images) are built nightly and pushed to
Dockerhub to ensure to always have the latest versions installed and be up-to-date with any
security patches that are available.

Ships popular development tools

The Devilbox is also designed to be a development environment offering many tools used for
everyday web development, no matter if frontend or backend.

Work inside the container

Instead of working on you host operating system, you can do everything inside the container.
This allows you to have all tools pre-installed and a working unix environment ready.

Work inside and outside the container interchangeably

No matter if you work on your host operating system or inside the Docker container. Special
mount points and port-forwards are already in place to make both look the same to you.

Others

Work offline

The Devilbox only requires internet initially to pull the required Docker images, once this is done
you can work completely offline. No need for an active internet connection.

Hacking

Last but not least, the Devilbox is bascially just a docker-compose.yml file and you can
easily add any Docker images you are currently missing in the Devilbox setup.

1. Install the Devilbox

Important

	Read first

	Ensure you have read this document to understand how this documentation works.

Table of Contents

	Supported OS

	Requirements

	Download the devilbox

	Checkout a different release

	Create .env file

	Adjust .env file

	Find your user id

	Find your group id

	Checklist

1.1. Supported OS

The devilbox runs on all operating systems that provide Docker and Docker Compose.

	[image: logo_lin]

	[image: logo_win]

	[image: logo_osx]

1.2. Requirements

The only requirements for the devilbox is to have Docker and Docker Compose installed,
everything else is bundled and provided withing the Docker container.
The minimum required versions are listed below:

	Docker: 1.12.0+

	Docker Compose: 1.9.0+

Additionally you will require git in order to clone the devilbox project.

Warning

	Docker Toolbox

	Use native Docker and do not use the Docker Toolbox. If you still have to use the
Docker Toolbox (e.g. for Windows 7 or older Macs) read up on this section.

Warning

Docker itself requires super user privileges which is granted to a system wide group
called docker. After having installed Docker on your system, ensure that your local
user is assigned to the docker group. Check this via groups or id command.

See also

	Install Docker

	Have a look at this page to help you install Docker for your operating system.

	Install Docker Compose

	Have a look at this page to help you install Docker Compose for your operating system.

1.3. Download the devilbox

The devilbox does not need to be installed. The only thing that is required is its git directory.
To download that, open a terminal and copy/paste the following command.

host> git clone https://github.com/cytopia/devilbox

1.3.1. Checkout a different release

You now have the devilbox downloaded at the latest version (git master branch). This is also recommended as it receives
bugfixes frequently. If you however want to stay on a stable release, you need to check out s
specific git tag.

Lets say you want your devilbox setup to be at release 0.12.1, all you have to do is to check out
this specific git tag.

host> cd path/to/devilbox
host> git checkout 0.12.1

Warning

Whenever you check out a different version, make sure that your .env file is up-to-date
with the bundled env-example file. Different Devilbox releases might require different
settings to be available inside the .env file. Refer to the next section for how to
create the .env file.

1.4. Create .env file

Inside the cloned devilbox git directory, you will find a file called env-example. This file
acts as a template with sane defaults for Docker Compose. In order to use it, it must be
copied to a file named .env. (Note the leading dot).

host> cp env-example .env

The .env file does nothing else then providing environment variables for Docker Compose
and in this case it is used as the main configuration file for the devilbox by providing all kinds
of settings (such as which version to start up).

See also

	Docker Compose env file [https://docs.docker.com/compose/env-file/]

	Official Docker documentation about the .env file

	.env file

	All available Devilbox .env values and their description

1.5. Adjust .env file

To get you started, there are only two variables that need to be adjusted:

	NEW_UID

	NEW_GID

The values for those two variables refer to your local (on your host operating system) user id
and group id. To find out what the values are required in your case, issue the following commands
on a terminal:

1.5.1. Find your user id

host> id -u

1.5.2. Find your group id

host> id -g

In most cases both values will be 1000, but for the sake of this example, let’s assume a value
of 1001 for the user id and 1002 for the group id.

Open the .env file with your favorite text editor and adjust those values:

.env

host> vi .env

NEW_UID=1001
NEW_GID=1002

Warning

Make sure that you use the values provided by id -u and id -g.

See also

	Syncronize container permissions

	Read up more on the general problem of trying to have syncronized permissions between
the host system and a running Docker container.

1.6. Checklist

	Docker and Docker Compose are installed at minimum required version

	Your user is part of the docker group

	Devilbox is cloned

	.env file is created

	User and group id have been set in .env file

That’s it, you have finished the first section and have a working Devilbox ready to be started.

2. Update the Devilbox

If you are in the initial install process, you can safely skip this section and come back once
you actually want to update the Devilbox.

Table of Contents

	Update git repository

	Stop container

	Case 1: Update master branch

	Case 2: Checkout release tag

	Keep .env file in sync

	Recreate container

	Update Docker images

	Update one Docker image

	Update all currently set Docker images

	Update all available Docker images for all versions

	Checklist git repository

	Checklist Docker images

2.1. Update git repository

2.1.1. Stop container

Before updating your git branch or checking out a different tag or commit, make sure to properly
stop all devilbox containers:

Stop containers
host> cd path/to/devilbox
host> docker-compose stop

Ensure containers are stopped
host> docker-compose ps

2.1.2. Case 1: Update master branch

If you simply want to update the master branch, do a git pull origin master:

Update master branch
host> cd path/to/devilbox
host> git pull origin master

2.1.3. Case 2: Checkout release tag

If you want to checkout a specific release tag (such as 0.12.1), do a git checkout 0.12.1:

Checkout release
host> cd path/to/devilbox
host> git checkout 0.12.1

2.1.4. Keep .env file in sync

Warning

Whenever you check out a different version, make sure that your .env file is up-to-date
with the bundled env-example file. Different Devilbox releases might require different
settings to be available inside the .env file.

You can also compare your current .env file with the provided env-example file by using
your favorite diff editor:

host> vimdiff .env env-example

host> diff .env env-example

host> meld .env env-example

2.1.5. Recreate container

Whenever the path of a volume changes (either due to upstream changes in git or due to you changing
it manually in the .env file) you need to remove the stopped container and have them fully
recreated during the next start.

Remove anonymous volumes
host> cd path/to/devilbox
host> docker-compose rm

See also

Remove stopped container

2.2. Update Docker images

Updating the git branch shouldn’t be needed to often, most changes are actually shipped via newer
Docker images, so you should frequently update those.

This is usually achieved by issueing a docker pull command with the correct image name and image
version or docker-compose pull for all currently selected images in .env file.
For your convenience there is a shell script in the Devilbox git directory: update-docker.sh
which will update all available Docker images at once for every version.

Note

The Devilbox own Docker images (Apache, Nginx, PHP and MySQL) are even built every night to ensure
latest security patches and tool versions are applied.

2.2.1. Update one Docker image

Updating or pulling a single Docker image is accomplished by docker pull <image>:<tag>.
This is not very handy as it is quite troublesome to do it separately per Docker image.

You first need to find out the image name and then also the currently used image tag.

host> grep 'image:' docker-compose.yml

 image: cytopia/bind:0.11
 image: devilbox/php-fpm:${PHP_SERVER:-7.0}-work
 image: devilbox/${HTTPD_SERVER:-nginx-stable}:0.13
 image: cytopia/${MYSQL_SERVER:-mariadb-10.1}:latest
 image: postgres:${PGSQL_SERVER:-9.6}
 image: redis:${REDIS_SERVER:-3.2}
 image: memcached:${MEMCD_SERVER:-latest}
 image: mongo:${MONGO_SERVER:-latest}

After having found the possible candidates, you will still have to find the corresponding value
inside the ..env file. Let’s do it for the PHP image:

host> grep '^PHP_SERVER' .env

PHP_SERVER=5.6

So now you can substitute the ${PHP_SERVER} variable from the first command with 5.6 and
finally pull a newer version:

host> docker pull devilbox/php-fpm:5.6-work

Not very efficient.

2.2.2. Update all currently set Docker images

This approach is using docker-compose pull to update all images, but only for the versions
that are actually set in .env.

host> docker-compose pull

Pulling bind (cytopia/bind:0.11)...
Pulling php (devilbox/php-fpm:5.6-work)...
Pulling httpd (devilbox/apache-2.2:0.13)...
Pulling mysql (cytopia/mysql-5.7:latest)...
Pulling pgsql (postgres:9.6)...
Pulling redis (redis:4.0)...
Pulling memcd (memcached:1.5.2)...
Pulling mongo (mongo:3.0)...

This is most likely the variant you want.

2.2.3. Update all available Docker images for all versions

In case you also want to pull/update every single of every available Devilbox image, you can
use the provided shell script, which has all versions hardcoded and pulls them for you:

host> ./update-docker.sh

2.3. Checklist git repository

	Ensure containers are stopped and removed/recreated (docker-compose stop && docker-compose rm)

	Ensure desired branch, tag or commit is checked out or latest changes are pulled

	Ensure .env file is in sync with env-example file

2.4. Checklist Docker images

	Ensure docker-compose pull or ./update-docker.sh is executed

3. Start the Devilbox

Congratulations, when you have reached this page everything has been set up and you can now get your
hands dirty.

Note

Starting and stopping containers is done via docker-compose. If you have never worked with
it before, have a look at their documentation for an
overview [https://docs.docker.com/compose/reference/overview/],
up [https://docs.docker.com/compose/reference/up/] and
stop [https://docs.docker.com/compose/reference/stop/] commands.

Table of Contents

	Start all container

	Start some container

	Open Devilbox intranet

	Checklist

3.1. Start all container

If you want all provided services to be available (as defined in docker-compose.yml),
just start them all via:

host> docker-compose up

	If you want to gracefully stop all container, hit Ctrl + c

	If you want to kill all container, hit Ctrl + c twice

3.2. Start some container

If you don’t require all services to be up and running and let’s say just PHP, HTTPD and
MYSQL, enter the following command:

host> docker-compose up httpd php mysql

	If you want to gracefully stop all started container, hit Ctrl + c

	If you want to kill all started container, hit Ctrl + c twice

See also

	Available container

	Have a look at this page to get an overview about all available container and by what name
they have to be specified.

3.3. Open Devilbox intranet

Once docker-compose up has finished and all or the selected container are up and running,
you can visit the Devilbox intranet with your favorite Web browser at http://localhost or
http://127.0.0.1.

The Intranet start page will also show you all running and failed containers:

[image: ../_images/devilbox-dash-full.png]
[image: ../_images/devilbox-dash-selective.png]

Warning

	Docker Toolbox

	When you are using Docker Toolbox the Devilbox Web server port will not be available on
your host computer. You have to forward the virtual machines port to your host computer.
Read more about it on this guide.

3.4. Checklist

	Docker container are started successfully with docker-compose up

	Intranet is reachable via http://localhost or http://127.0.0.1

4. Directory overview

Important

The directory overview only provides you some theoretical, but useful insights about how
it all works together. You should at least read it once to be able to debug any problems you
might encounter.

If you have read it already, jump directly to Create your first project

Table of Contents

	Data directory

	Project directory

	Docroot directory

	Domain suffix

	Making sense of it

	Checklist

4.1. Data directory

By default all your projects must be created in the ./data/www/ directory which is inside in
your Devilbox git directory. This can be changed as well, but is outside the scope of this
getting started tutorial.

You can verifiy that the path is actually ./data/www/ by checking your .env file:

host> grep HTTPD_DATADIR .env

HOST_PATH_HTTPD_DATADIR=./data/www

4.2. Project directory

The project directory is a directory directly within the data directory.

This represents one project.

By creating this directory, the web server will create a new virtual host for you. This
happens fully automated and there is nothing else required to do except just to create a directory.

The name of this directory will also be used to build up the final project url together with the
domain suffix: http://<project directory>.<domain suffix>

Create as many project directories as you require.

4.3. Docroot directory

The docroot directory is a directory within each project directory from which the webserver will serve the files.

By default this directory must be named htdocs. This can be changed as well, but is outside
the scope of this getting started tutorial.

You can verifiy that the docroot directory is actually htdocs by checking your .env file:

host> grep DOCROOT_DIR .env

HTTPD_DOCROOT_DIR=htdocs

4.4. Domain suffix

The default domain suffix (TLD_SUFFIX variable in .env file) is loc. That means that
all your projects will be available under the following address: http://<project-directory>.loc.
This can be changed as well, but is outside the scope of this getting started tutorial.

You can verifiy that the suffix is actually loc by checking your .env file:

host> grep ^TLD_SUFFIX .env

TLD_SUFFIX=loc

4.5. Making sense of it

Ok, let’s sum it up and make sense of the previously provided information. To better illustrate
the behaviour we are going to use project-1 as our project directory name.

	Item

	Example

	Description

	data dir

	./data/www

	Where all of your projects reside.

	project dir

	./data/www/project-1

	A single project. It’s name will be used to create the url.

	docroot dir

	./data/www/project-1/htdocs

	Where the webserver looks for files within your project.

	domain suffix

	loc

	Suffix to build up your project url.

	project url

	http://project-1.loc

	Final resulting project url.

data dir

This directory is mounted into the httpd and php container, so that both know where all projects can be found. This is also the place where you create project directories for each of your projects.

project dir

Is your project and used to generate the virtual host together with the domain suffix.

docroot dir

A directory inside your project dir from where the webserver will actually serve your files.

domain suffix

Used as part of the project url.

4.6. Checklist

	You know what the data directory is

	You know what the project directory is

	You know what the docroot directory is

	You know what the domain suffix is

	You know how domains are constructed

5. Create your first project

Important

Ensure you have read Directory overview to understand what is
going on under the hood.

Note

This section not only applies for one project, it applied for as many projects as you need.
There is no limit in the number of projects.

Table of Contents

	Step 1: visit Intranet vhost page

	Step 2: create a project directory

	Step 3: create a docroot directory

	Step 4: create a DNS entry

	Add DNS for Linux and MacOS (native Docker)

	Add DNS for Windows (native Docker)

	Add DNS for Docker Toolbox

	Back to intranet

	Step 5: Visit your project

	Step 6: Create a hello world

	Checklist

5.1. Step 1: visit Intranet vhost page

Before starting, have a look at the vhost page at http://localhost/vhosts.php

It should look like the screenshot below and will actually already provide the information needed to create a new project.

[image: ../_images/devilbox-vhosts-empty.png]

5.2. Step 2: create a project directory

In your Devilbox git directory, navigate to ./data/www and create a new directory.

Note

Choose the directory name wisely, as it will be part of the domain for that project.
For this example we will use project-1 as our project name.

navigate to your Devilbox git directory
host> cd path/to devilbox

navigate to the data directory
host> cd data/www

create a new project directory named: project-1
host> mkdir project-1

Visit the vhost page again and see what has changed: http://localhost/vhosts.php

[image: ../_images/devilbox-vhosts-directory.png]
So what has happened?

By having created a project directory, the web server container has created a new virtual host. However it has noticed, that the actual document root directory does not yet exist and therefore it cannot serve any files yet.

5.3. Step 3: create a docroot directory

Note

As desribed in Docroot directory the docroot directory name must be htdocs for now.

Navigate to your newly created project directory and create a directory named htdocs inside it.

navigate to your Devilbox git directory
host> cd path/to devilbox

navigate to your above created project directory
host> cd data/www/project-1

create the docroot directory
host> mkdir htdocs

Vist the vhost page again and see what has changed: http://localhost/vhosts.php

[image: ../_images/devilbox-vhosts-dns.png]
So what has happened?

By having created the docroot directory, the web server is now able to serve your files. However it has noticed, that you have no way yet, to actually visit your project url, as no DNS record for it exists yet.

The intranet already gives you the exact string that you can simply copy into your /etc/hosts file on your host operating system to solve this issue.

Important

This will only work on native Docker for Linux or MacOS. Read up on the next section to also find out how to do that on Docker Toolbox and Windows.

5.4. Step 4: create a DNS entry

Note

This step can also be automated via the bundled DNS server to automatically provide catch-all
DNS entries to your host computer, but is outside the scope of this
getting started tutorial.

5.4.1. Add DNS for Linux and MacOS (native Docker)

On Linux and MacOS (when using the native Docker), this step is fairly simple. The intranet provides
you the exact string you need to paste into your /etc/hosts file on your host operating system.

Open your /etc/hosts file with sudo or root privileges
and add the following DNS entry
host> sudo vi /etc/hosts

127.0.0.1 project-1.loc

5.4.2. Add DNS for Windows (native Docker)

On Windows (when using the native Docker), you can also copy paste the command provided by the intranet,
however the destination file is different. You have to add this string into: C:\Windows\System32\drivers\etc.

Open C:\Windows\System32\drivers\etc with admistrative privileges and add the following entry

127.0.0.1 project-1.loc

5.4.3. Add DNS for Docker Toolbox

When using Docker Toolbox the Devilbox runs inside a virtual machine and therefore the Webserver port (80)
is not exposed to your host operating system. So your DNS record must point to the virtual machine instead of your
host system.

	Find out the IP address the virtual machine is running on

	Add a DNS entry to your host operating system for this IP address.

For the sake of this example, let’s assume the virtual machine is running on 192.16.0.1, then the DNS record you will
have to add instead on your host operating system is:

Docker Toolbox on MacOS

host> sudo vi /etc/hosts

192.16.0.1 project-1.loc

Docker Toolbox on Windows

Open C:\Windows\System32\drivers\etc with admistrative privileges and add the following entry

192.16.0.1 project-1.loc

5.4.4. Back to intranet

Vist the vhost page again and see what has changed: http://localhost/vhosts.php

[image: ../_images/devilbox-vhosts-finished.png]
So what has happened?

By having created the DNS record, the Devilbox intranet is aware that everything is setup now and
gives you a link to your new project.

5.5. Step 5: Visit your project

On the intranet, click on your project link. This will open your project in a new Browser tab or
visit http://project-1.loc

[image: ../_images/devilbox-project-no-files.png]
So what has happened?

Everything is setup now, however the webserver is trying to find a index.php file in your document root which does not yet exist.

So all is left for you to do is to add your HTML or PHP files.

5.6. Step 6: Create a hello world

Navigate to your docroot directory within your project and create a index.php file with some output.

navigate to your Devilbox git directory
host> cd path/to devilbox

navigate to your projects docroot directory
host> cd data/www/project-1/htdocs

Create a hello world index.php file
host> echo "<?php echo 'hello world';" > index.php

Alternatively create an index.php file in data/www/project-1/htdocs with the following contents:

<?php echo 'hello world';

Visit your project url again and see what has changed: http://project-1.loc

[image: ../_images/devilbox-project-hello-world.png]

5.7. Checklist

	Project directory is created

	Docroot directory is created

	DNS entry is added to the host operating system

	PHP files are added to your docroot directory

6. Read log files

The logging behaviour is determined by the value of DOCKER_LOGS inside your .env
file. By default logs are mounted to the host operating system for convenient access.

Table of Contents

	Mounted logs

	Docker logs

	Checklist

6.1. Mounted logs

By default log files for PHP, the webserver and the MySQL server are mounted to the host system
into your Devilbox git directory under ./log/. All logs are separated by service version
in the following format: ./log/<service>-<version>/

The log directory structure would look something like this:

host> cd path/to/devilbox
host> tree log

log/
├── nginx-stable/
│ ├── nginx-stable/
│ ├── defaultlocalhost-access.log
│ ├── defaultlocalhost-error.log
│ ├── <project-name>-access.log # Each project has its own access log
│ ├── <project-name>-error.log # Each project has its own error log
├── mariadb-10.1/
│ ├── error.log
│ ├── query.log
│ ├── slow.log
├── php-fpm-7.1/
│ ├── php-fpm.access
│ ├── php-fpm.error

Use your favorite tools to view log files such as tail, less, more, cat or others.

Important

Currently logs are only mounted for PHP, HTTPD and MYSQL container.
All other services will log to Docker logs.

6.2. Docker logs

You can also change the behaviour where logs are streamed by setting DOCKER_LOGS
to 1 inside your .env file. When doing logs are sent to Docker logs.

When using this approach, you need to use the docker-compose logs command to view your log
files from within the Devilbox git directory.

host> cd path/to/devilbox
host> docker-compose logs

When you want to continuously watch the log output (such as tail -f), you need to append -f
to the command.

host> cd path/to/devilbox
host> docker-compose logs -f

When you only want to have logs displayed for a single service, you can also append the service
name (works with or without -f as well):

host> cd path/to/devilbox
host> docker-compose logs php -f

Important

This currently does not work for the MySQL container, which will always log to file.

6.3. Checklist

	You know how to switch between file and Docker logs

	You know where log files are mounted

	You know how to access Docker logs

7. Email catch-all

All your projects can send emails to whatever recipient. You do not have to worry that they will
actually being sent. Each PHP container runs a local postfix mailserver that intercepts
all outgoing mails and puts them into a local mailbox by the user devilbox.

In order to view sent emails open up the devilbox intranet http://localhost/mail.php.
There you can also test email sending and verify that they really stay locally.

[image: ../_images/devilbox-email-catch-all.png]
In the above image from the intranet you can see that all emails sent to whatever recipient
have been caught by the Devilbox and are available to be read.

8. Enter the PHP container

Another core feature of the Devilbox is, to be totally independent of what you have or have not
installed on your host operating system.

The Devilbox already ships with many common developer tools which are installed inside each PHP
container, so why not make use of it.

The only thing you might need to install on your host operating system is your favourite IDE or
editor to actually start coding.

See also

If you want to find out what tools are available inside the PHP container, visit the
following section: Available tools.

Table of Contents

	How to enter

	Linux and MacOS

	Windows

	How to become root

	Tools

	What is available

	How to update them

	Advanced

	Checklist

8.1. How to enter

Note

You can only enter the PHP container if it is running.

8.1.1. Linux and MacOS

On Linux and MacOS you can simply execute the provided shell script: shell.sh. By doing so
it will enter you into the PHP container and bring you to /shared/httpd.

Execute on the host operating system
host> ./shell.sh

Now you are inside the PHP Linux container
devilbox@php-7.0.19 in /shared/httpd $

8.1.2. Windows

On Windows you have a different script to enter the PHP container: shell.bat.
Just run it and it will enter you into the PHP container and bring you to /shared/httpd.

Execute on the host operating system
C:/Users/user1/devilbox> shell.bat

Now you are inside the PHP Linux container
devilbox@php-7.0.19 in /shared/httpd $

8.2. How to become root

When you enter the container with the provided scripts, you are doing so as the user devilbox.
If you do need to perform any actions as root (such as installing new software), you can use
the password-less sudo.

Inside the PHP Linux container as user devilbox
devilbox@php-7.0.19 in /shared/httpd $ sudo su -

Now you are root and can do anything you want
root@php-7.0.19 in /shared/httpd $

Note

As this action is inside a Docker container, there is no difference between Linux, MacOS or
Windows. Every host operating system is using the same Docker container - equal accross all
platforms.

8.3. Tools

8.3.1. What is available

There are lots of tools available, for a full overview see Available tools.
If you think you are missing a tool, install it yourself as root, or open up an issue on github
to get it backed into the Docker image permanently.

See also

Available tools

8.3.2. How to update them

There is no need to update the tools itself. All Docker images are rebuilt every night and
automatically pushed to Docker hub to ensure versions are outdated at a maximum of 24 hours.

The only thing you have to do, is to update the Docker images itself, simply by pulling a new version.

See also

Update Docker images

8.4. Advanced

This is just a short overview about the possibility to work inside the container.
If you want to dig deeper into this topic there is also a more advanced tutorial available:

See also

Work inside the container

8.5. Checklist

	You know how to enter the PHP container on Linux, MacOS or Windows

	You know how to become root inside the PHP container

	You know what tools are available inside the PHP container

	You know how to update the tools by pulling new versions of the Docker images

9. The Intranet

The intranet is your command & control center showing all kinds of information and settings
currently in effect. It also offers third-party projects to do all sorts of database
manipulation.

Table of Contents

	Devilbox tools

	Overview

	Virtual hosts

	Emails

	Databases

	Info pages

	Third-party tools

	phpMyAdmin

	Adminer

	OpcacheGUI

	Settings

	Password protect the intranet

	Disable the intranet

	Checklist

9.1. Devilbox tools

9.1.1. Overview

The start page is there to check if everything works as expected. It shows all desired Docker
containers you wanted to start and if they succeeded, as well as their ports, mount points and
special settings applied via .env.

[image: ../_images/devilbox-index.png]

9.1.2. Virtual hosts

The virtual host page displays all available projects and let’s you know if their configuration
is correct, such as DNS settings or document root.

[image: ../_images/devilbox-vhosts.png]

9.1.3. Emails

The email page displays all emails that would have been sent, but were caught by the integrated
email catch-all functionality.

[image: ../_images/devilbox-emails.png]

9.1.4. Databases

There are several database pages for MySQL and NoSQL databases giving you an overview about
what is currently in place, how many databases/schemas and or recors and what size they take up.

The following example shows the database page for MySQL:

[image: ../_images/devilbox-database.png]

9.1.5. Info pages

Info pages also exist for every Docker container which show various settings which are
currently applied.

The following example shows you the info page for PHP.

[image: ../_images/devilbox-info-php.png]
The following example shows you the info page for MySQL:

[image: ../_images/devilbox-info-mysql.png]

9.2. Third-party tools

9.2.1. phpMyAdmin

phpMyAdmin [https://www.phpmyadmin.net/] is a free software tool written in PHP,
intended to handle the administration of MySQL over the Web. phpMyAdmin supports a wide range
of operations on MySQL and MariaDB. Frequently used operations (managing databases, tables,
columns, relations, indexes, users, permissions, etc) can be performed via the user interface,
while you still have the ability to directly execute any SQL statement.

9.2.2. Adminer

Adminer [https://www.adminer.org/] (formerly phpMinAdmin) is a full-featured database
management tool written in PHP. Conversely to phpMyAdmin, it consist of a single file ready to
deploy to the target server. Adminer is available for MySQL, MariaDB, PostgreSQL, SQLite, MS SQL,
Oracle, Firebird, SimpleDB, Elasticsearch and MongoDB.

9.2.3. OpcacheGUI

OpcacheGui [https://github.com/amnuts/opcache-gui] is a clean and responsive interface for
Zend OPcache information, showing statistics, settings and cached files, and providing a real-time
update for the information (using jQuery and React).

9.3. Settings

9.3.1. Password protect the intranet

If you share your projects over a LAN, but do not want anybody to view the Devilbox intranet,
you can also password protect it.

See also

In order to do so, have a look at the following .env variables:

	DEVILBOX_UI_PROTECT

	DEVILBOX_UI_PASSWORD

9.3.2. Disable the intranet

If you want a more production-like setup, you can also fully disable the Devilbox intranet.
This is achieved internally by removing the default virtual host which serves the intranet.
When the intranet is disabled, there is no way to access it.

See also

In order to do so, have a look at the following .env variable:

	DEVILBOX_UI_ENABLE

9.4. Checklist

	You know what tools are provided by the Devilbox intranet

	You know how to password protect the Devilbox intranet

	You know how to disable the Devilbox intranet

10. Best practice

If you have already read all documents in the Getting started guide, you should be ready to fully
operate the Devilbox. This section builds on top of that and gives you some best-practices as well
as tips and tricks.

Table of Contents

	Move data out of Devilbox directory

	Projects

	Databases

	MySQL

	PostgreSQL

	MongoDB

	Version control .env file

	Version control service config files

	PHP project hostname settings

	Timezone

10.1. Move data out of Devilbox directory

One thing you should take into serious consideration is to move data such as your projects as well
as persistent data of databases out of the Devilbox git directory.

The Devilbox git directory should be something that can be safely deleted and re-created without
having to worry about loosing any project data. There could also be the case that you have a
dedicated hard-disk to store your projects or you have your own idea about a directory structure
where you want to store your projects.

10.1.1. Projects

So let’s assume all of your projects are already in place under /home/user/workspace/web/. Now
you decide to use the Devilbox, but still want to keep your projects where they are at the moment.

All you have to to is to adjust the path of HOST_PATH_HTTPD_DATADIR in the .env file.

Navigate to Devilbox git directory
host> cd path/to/devilbox

Open the .env file with your favourite editor
host> vim .env

Now Adjust the value of HOST_PATH_HTTPD_DATADIR

.env

HOST_PATH_HTTPD_DATADIR=/home/user/workspace/web

That’s it, whenever you start up the Devilbox /home/user/workspace/web/ will be mounted into
the PHP and the web server container into /shared/httpd/.

10.1.2. Databases

Moving your projects out of the Devilbox git directory is one step, you still need to take care
about persistent data of all available databases as well.

Let’s assume you desired location for database storage is at /home/user/workspace/db/.

10.1.2.1. MySQL

All you have to to is to adjust the path of HOST_PATH_MYSQL_DATADIR in the .env file.

Navigate to Devilbox git directory
host> cd path/to/devilbox

Open the .env file with your favourite editor
host> vim .env

Now Adjust the value of HOST_PATH_MYSQL_DATADIR

.env

HOST_PATH_MYSQL_DATADIR=/home/user/workspace/db/mysql

That’s it, whenever you start up the Devilbox /home/user/workspace/db/mysql/ will be mounted
into the MySQL container.

10.1.2.2. PostgreSQL

All you have to to is to adjust the path of HOST_PATH_PGSQL_DATADIR in the .env file.

Navigate to Devilbox git directory
host> cd path/to/devilbox

Open the .env file with your favourite editor
host> vim .env

Now Adjust the value of HOST_PATH_PGSQL_DATADIR

.env

HOST_PATH_PGSQL_DATADIR=/home/user/workspace/db/pgsql

That’s it, whenever you start up the Devilbox /home/user/workspace/db/pqsql/ will be mounted
into the PostgreSQL container.

10.1.2.3. MongoDB

All you have to to is to adjust the path of HOST_PATH_MONGO_DATADIR in the .env file.

Navigate to Devilbox git directory
host> cd path/to/devilbox

Open the .env file with your favourite editor
host> vim .env

Now Adjust the value of HOST_PATH_MONGO_DATADIR

.env

HOST_PATH_MONGO_DATADIR=/home/user/workspace/db/mongo

That’s it, whenever you start up the Devilbox /home/user/workspace/db/mongo/ will be mounted
into the MongoDB container.

10.1.3. Version control .env file

The .env file is ignored by git, because this is your file to customize and it should be
your responsibility to make sure to backup or version controlled.

One concept you can apply here is to have a separate dotfiles git repository.
This is a repository that holds all of your configuration files such as vim, bash, zsh, xinit
and many more. Those files are usually stored inside this repository and then symlinked to the
correct location. By having all configuration files in one place, you can see and track changes
easily as well as bein able to jump back to previous configurations.

In case of the Devilbox .env file, just store this file in your repository and symlink it to
the Devilbox git directiry. This way you make sure that you keep your file, even when the Devilbox
git directory is deleted and you also have a means of keeping track about changes you made.

You could also go further and have several .env files available somewhere. Each of those files
holds different configurations e.g. for different projects or customers.

	env-customer1

	env-php55

	env-project3

You would then simply symlink one of those files to the Devilbox git directory.

10.1.4. Version control service config files

Todo

This will require some changes on the Devilbox and will be implemented shortly.

	Symlink and have your own git directory

	Separate data partition, backups

10.2. PHP project hostname settings

When configuring your PHP projects to use MySQL, PostgreSQL, Redis, Mongo and other services,
make sure to set the hostname of each of those services to 127.0.0.1.

Why is that?

The PHP container port-forwards each service port to its own listen address on 127.0.0.1.
The Devilbox also exposes each of those service ports to the host operating system on 127.0.0.1.

This allows you to keep your project configuration unchanged and have the same behaviour inside the
PHP container and on your host operating system.

Important

Do not mix up localhost with 127.0.0.1. They behave differently!
Use 127.0.0.1 and do not use localhost.

As an example, if you want to access the MySQL database from within the PHP container, you do the
following:

 # Navigate to Devilbox git directory
 host> cd path/to/devilbox

 # Enter the PHP container
 host> ./shell.sh

 # Enter the MySQL console
 php> mysql -u root -h 127.0.0.1 -p
 mysql>

The very same command applies to access the MySQL database from your host operating system:

 # Enter the MySQL console
 host> mysql -u root -h 127.0.0.1 -p
 mysql>

So no matter if you use the Devilbox or have another LAMP stack installed locally on your host
operating system, you do not have to change your configuration files if you stick to this tip.

So any of your projects php files that configure MySQL as an example should point the hostname
or IP address of the MySQL server to 127.0.0.1:

<?php
// MySQL server connection in your project configuration
mysql_host = '127.0.0.1';
mysql_port = '3306';
mysql_user = 'someusername';
mysql_pass = 'somepassword';
?>

See also

Work inside the container

10.3. Timezone

The TIMEZONE value will affect PHP, web server and MySQL container equally. It does
however not affect any other official Docker container that are used within the Devilbox. This is
an issue that is currently still being worked on.

Feel free to change this to any timezone you require for PHP and MySQL, but keep in mind that
timezone values for databases can be painful, once you want to switch to a different timezone.

A good practice is to always use UTC on databases and have your front-end application calculate
the correct time for the user. This way you will be more independent of any changes.

Backup and restore MySQL

Backup and restore will be necessary when you are going to switch MySQL versions.
Each version has its own data directory and is fully indepentend of other versions.
In case you want to switch to a different version, but still want to have your MySQL databases
present, you must first backup the databases of your current version and import them into the
new version.

There are multiple ways to backup and restore. Chose the one which is most convenient for you.

Table of Contents

	Backup

	Mysqldump-secure

	List backups

	*.info files

	mysqldump

	phpMyAdmin

	Adminer

	Restore

	mysql

	*.sql file

	*.sql.gz file

	*.sql.tar.gz file

	phpMyAdmin

	Adminer

Backup

There are many different options to backup your MySQL database including some for the command line
and some for using the Web interface. The recommended and fastest method is to use
mysqldump-secure, as it will also add info files (*.info) to each database recording checksums,
dump date, dump options as well as the server version it came from.

Mysqldump-secure

mysqldump-secure [https://mysqldump-secure.org/] is bundled, setup and ready to use in every
PHP container. You can run it without any arguments and it will dump each available database as a
separated compressed file. Backups will be located in ./backups/mysql/ inside the Devilbox
git directory or in /shared/backups/mysql/ inside the PHP container.

To have your backups in place is just three commands away:

Navigate to the Devilbox directory
host> cd path/to/devilbox

Enter the PHP container
host> ./shell.sh

Run mysqldump-secure
devilbox@php-7.1.6 in /shared/httpd $ mysqldump-secure

[INFO] (OPT): Logging enabled
[INFO] (OPT): MySQL SSL connection disabled
[INFO] (OPT): Compression enabled
[INFO] (OPT): Encryption disabled
[INFO] (OPT): Deletion disabled
[INFO] (OPT): Nagios log disabled
[INFO] (OPT): Info files enabled
[INFO] (SQL): 1/3 Skipping: information_schema (DB is ignored)
[INFO] (SQL): 2/3 Dumping: mysql (0.66 MB) 1 sec (0.13 MB)
[INFO] (SQL): 3/3 Skipping: performance_schema (DB is ignored)
[OK] Finished successfully

List backups

Let’s see where to find the backups inside the PHP container:

Navigate to the Devilbox directory
host> cd path/to/devilbox

Enter the PHP container
host> ./shell.sh

Show directory output
devilbox@php-7.1.6 in /shared/httpd $ ls -l /shared/backups/mysql/

-rw-r--r-- 1 devilbox 136751 Jun 17 13:31 2017-06-17_13-31__mysql.sql.gz
-rw-r--r-- 1 devilbox 2269 Jun 17 13:31 2017-06-17_13-31__mysql.sql.gz.info

Let’s do the same again and see where to find the backups in the Devilbox git directory

Navigate to the Devilbox directory
host> cd path/to/devilbox

Show directory output
host> ls -l backups/mysql/

-rw-r--r-- 1 cytopia 136751 Jun 17 13:31 2017-06-17_13-31__mysql.sql.gz
-rw-r--r-- 1 cytopia 2269 Jun 17 13:31 2017-06-17_13-31__mysql.sql.gz.info

*.info files

The *.info file will hold many useful information in case you need to debug any problems
occured during backups. Let’s have a look at one of them:

host> cat ./backups/mysql/2017-06-17_13-31__mysql.sql.gz.info

2017-06-17_13-31__mysql.sql.gz.info

; mysqldump-secure backup record
; Do not alter this file!
; Creation of this file can be turned off via config file.

; ==
; = Local system information
; ==
[mysqldump-secure]
version = /usr/local/bin/mysqldump-secure (0.16.3)
vdate = 2016-08-18
config = /etc/mysqldump-secure.conf

[system]
uname = Linux 4.4.0-79-generic
hostname =
user = devilbox
group = devilbox

[tools]
mysqldump = /usr/bin/mysqldump (10.14 Distrib 5.5.52-MariaDB) [for Linux (x86_64)]
mysql = /usr/bin/mysql (15.1 Distrib 5.5.52-MariaDB) [for Linux (x86_64) using readline 5.1]
compressor = /usr/bin/gzip (gzip 1.5)
encryptor = Not used

; ==
; = Database / File information
; ==
[database]
db_name = mysql
db_size = 687326 Bytes (0.66 MB)
tbl_cnt = 30

[file]
file_path = /shared/backups/mysql
file_name = 2017-06-17_13-31__mysql.sql.gz
file_size = 136751 Bytes (0.13 MB)
file_chmod = 0644
file_owner = devilbox
file_group = devilbox
file_mtime = 1497699116 (2017-06-17 13:31:56 CEST [+0200])
file_md5 = 8d1a6c38f81c691bc4b490e7024a4f72
file_sha = 11fb85282ea866dfc69d29dc02a0418bebfea30e7e566c3c588a50987aceac2f

; ==
; = Dump procedure information
; ==
[mysqldump]
encrypted = 0
compressed = 1
arguments = --opt --default-character-set=utf8 --events --triggers --routines --hex-blob --complete-insert --extended-insert --compress --lock-tables --skip-quick
duration = 1 sec

[compression]
compressor = gzip
arguments = -9 --stdout

[encryption]
encryptor =
algorithm =
pubkey =

; ==
; = Server information
; ==
[connection]
protocol = mysql via TCP/IP
secured = No SSL
arguments = --defaults-file=/etc/mysqldump-secure.cnf

[server]
hostname = 001b3750b549
port = 3306
replica = master
version = MariaDB 10.1.23-MariaDB MariaDB Server

mysqldump

mysqldump [https://dev.mysql.com/doc/refman/5.7/en/mysqldump.html] is bundled with each PHP
container and ready to use. To backup a database named my_db_name follow the below listed
example which shows you how to do that from within the PHP container:

Navigate to the Devilbox directory
host> cd path/to/devilbox

Enter the PHP container
host> ./shell.sh

Start the backup
devilbox@php-7.1.6 in /shared/httpd $ mysqldump -h mysql -u root -p my_db_name > /shared/backups/mysql/my_db_name.sql

To find out more about the configuration and options of mysqldump, visit its project page under:
https://dev.mysql.com/doc/refman/5.7/en/mysqldump.html

phpMyAdmin

If you do not like to use the command line for backups, you can use
phpMyAdmin [https://www.phpmyadmin.net]. It comes bundled with the devilbox intranet.

To find out more about the usage of phpMyAdmin, visit its project page under:
https://www.phpmyadmin.net.

Adminer

If you do not like to use the command line for backups, you can use
Adminer [https://www.adminer.org]. It comes bundled with the devilbox intranet.

To find out more about the usage of Adminer, visit its project page under: https://www.adminer.org.

Restore

mysql

In order to restore or import mysql databases on the command line, you need to use the mysql
binary. Here are a few examples for different file types:

*.sql file

Navigate to the Devilbox directory
host> cd path/to/devilbox

Enter the PHP container
host> ./shell.sh

Start the import
devilbox@php-7.1.6 in /shared/httpd $ mysql -h mysql -u root -p my_db_name < /shared/backups/mysql/my_db_name.sql

*.sql.gz file

Navigate to the Devilbox directory
host> cd path/to/devilbox

Enter the PHP container
host> ./shell.sh

Start the import
devilbox@php-7.1.6 in /shared/httpd $ zcat /shared/backups/mysql/my_db_name.sql.gz | mysql -h mysql -u root -p my_db_name

*.sql.tar.gz file

Navigate to the Devilbox directory
host> cd path/to/devilbox

Enter the PHP container
host> ./shell.sh

Start the import
devilbox@php-7.1.6 in /shared/httpd $ tar xzOf /shared/backups/mysql/my_db_name.sql.tar.gz | mysql -h mysql -u root -p my_db_name

phpMyAdmin

phpMyAdmin [https://www.phpmyadmin.net] supports importing many different formats out-of-the-box.
Simply select the compressed or uncompressed file and press Go in the import section of
the web interface.

Adminer

Adminer [https://www.adminer.org] supports importing of plain (*.sql) or gzipped compressed
(*.sql.gz) files out-of-the-box. Simply select the compressed or uncompressed file and press
Execute in the import section of the web interface.

Backup and restore PostgreSQL

Backup and restore will be necessary when you are going to switch PostgreSQL versions.
Each version has its own data directory and is fully indepentend of other versions.
In case you want to switch to a different version, but still want to have your PostgreSQL databases
present, you must first backup the databases of your current version and import them into the
new version.

There are multiple ways to backup and restore. Chose the one which is most convenient for you.

Table of Contents

	Backup

	pg_dump

	Adminer

	Restore

	psql

	*.sql file

	*.sql.gz file

	*.sql.tar.gz file

	Adminer

Backup

pg_dump

pg_dump [https://www.postgresql.org/docs/current/static/backup-dump.html] is bundled with
each PHP container and reay to use. To backup a database named my_db_name follow the below
listed example:

Navigate to the Devilbox directory
host> cd path/to/devilbox

Enter the PHP container
host> ./shell.sh

Run pg_dump
devilbox@php-7.1.6 in /shared/httpd $ pg_dump -h pgsql -U postgres -W my_db_name > /shared/backups/pgsql/my_db_name.sql

To find out more about the configuration and options of pg_dump, visit its project page under:
https://www.postgresql.org/docs/current/static/backup-dump.html.

Adminer

If you do not like to use the command line for backups, you can use
Adminer [https://www.adminer.org]. It comes bundled with the devilbox intranet.

To find out more about the usage of Adminer, visit its project page under: https://www.adminer.org.

Restore

psql

In order to restore or import PostgreSQL databases on the command line, you need to use
psql [https://www.postgresql.org/docs/current/static/backup-dump.html#BACKUP-DUMP-RESTORE].
Here are a few examples for different file types:

*.sql file

Navigate to the Devilbox directory
host> cd path/to/devilbox

Enter the PHP container
host> ./shell.sh

Start the import
devilbox@php-7.1.6 in /shared/httpd $ psql -h pgsql -U postgres -W my_db_name < /shared/backups/pgsql/my_db_name.sql

*.sql.gz file

Navigate to the Devilbox directory
host> cd path/to/devilbox

Enter the PHP container
host> ./shell.sh

Start the import
devilbox@php-7.1.6 in /shared/httpd $ zcat /shared/backups/pgsql/my_db_name.sql.gz | psql -h pgsql -U postgres -W my_db_name

*.sql.tar.gz file

Navigate to the Devilbox directory
host> cd path/to/devilbox

Enter the PHP container
host> ./shell.sh

Start the import
devilbox@php-7.1.6 in /shared/httpd $ tar xzOf /shared/backups/pgsql/my_db_name.sql.tar.gz | psql -h pgsql -U postgres -W my_db_name

Adminer

Adminer [https://www.adminer.org] supports importing of plain (*.sql) or gzipped compressed
(*.sql.gz) files out-of-the-box. Simply select the compressed or uncompressed file and press
Execute in the import section of the web interface.

Backup and restore MongoDB

Backup and restore will be necessary when you are going to switch MongoDB versions.
Each version has its own data directory and is fully indepentend of other versions.
In case you want to switch to a different version, but still want to have your MongoDB databases
present, you must first backup the databases of your current version and import them into the
new version.

There are multiple ways to backup and restore. Chose the one which is most convenient for you.

Table of Contents

	Backup

	mongodump

	Restore

	mongorestore

Backup

mongodump

mongodump [https://docs.mongodb.com/manual/reference/program/mongodump] is bundled with
each PHP container and reay to use. To backup all databases follow the below listed example:

Navigate to the Devilbox directory
host> cd path/to/devilbox

Enter the PHP container
host> ./shell.sh

Run mongodump
devilbox@php-7.1.6 in /shared/httpd $ mongodump --out /shared/backups/mongo

To find out more about the configuration and options of mongodump, visit its project page under:
https://docs.mongodb.com/manual/reference/program/mongodump.

Restore

mongorestore

mongorestore [https://docs.mongodb.com/manual/reference/program/mongorestore] is bundled with
each PHP container and ready to use. To restore all MongoDB databases follow the below listed example:

Navigate to the Devilbox directory
host> cd path/to/devilbox

Enter the PHP container
host> ./shell.sh

Start the restore/import from /shared/backups/mongo
devilbox@php-7.1.6 in /shared/httpd $ mongorestore /shared/backups/mongo

To find out more about the configuration and options of mongorestore, visit its project page under:
https://docs.mongodb.com/manual/reference/program/mongorestore/.

Communicating with external hosts

This tutorial shows you how to connect the Devilbox to running Docker container outside the
Devilbox network, i.e. Docker container you have started separately.

Table of Contents

	Prerequisites

	Host IP: Docker on Linux

	Host IP: Docker for Mac

	Docker 18.03.0-ce+ and Docker compose 1.20.1+

	Docker 17.12.0-ce+ and Docker compose 1.18.0+

	Docker 17.06.0-ce+ and Docker compose 1.14.0+

	Host IP: Docker for Windows

	Docker 18.03.0-ce+ and Docker compose 1.20.1+

	Docker 17.06.0-ce+ and Docker compose 1.14.0+

	Make DNS available to the Devilbox

	Adding extra hosts

	Example

	Mapping on Linux

	Mapping on MacOS

	Mapping on Windows

	Auto DNS

	Further reading

Prerequisites

There are two things you need to make sure of are met beforehand:

	The external Docker container must expose its ports on all interfaces on your host operating system

	The IP by which the host is reachable from within the Devilbox container.

Host IP: Docker on Linux

If you run Docker on Linux the host IP is always 172.16.238.1, which is the default gateway
IP address within the Devilbox bridge network (see docker-compose.yml).

By default Docker on Linux does not have CNAME’s of the host computer as for example with MacOS
or Windows, therefore two custom CNAME’s have been added by the Devilbox in order to emulate the
same behaviour:

	CNAME: docker.for.lin.host.internal

	CNAME: docker.for.lin.localhost

Host IP: Docker for Mac

If you run Docker for Mac, an IP address is not necessary as it already provides a CNAME which will
always point to the IP address of your host operating system. Depending on the Docker version this
CNAME will differ:

Docker 18.03.0-ce+ and Docker compose 1.20.1+

CNAME: host.docker.internal

Docker 17.12.0-ce+ and Docker compose 1.18.0+

CNAME: docker.for.mac.host.internal

Docker 17.06.0-ce+ and Docker compose 1.14.0+

CNAME: docker.for.mac.localhost

Host IP: Docker for Windows

If you run Docker for Windows, an IP address is not necessary as it already provides a CNAME which will
always point to the IP address of your host operating system. Depending on the Docker version this
CNAME will differ:

Docker 18.03.0-ce+ and Docker compose 1.20.1+

CNAME: docker.for.win.host.internal

Docker 17.06.0-ce+ and Docker compose 1.14.0+

CNAME: docker.for.win.host.localhost

Make DNS available to the Devilbox

Inside each Devilbox Docker container you can already connect to all host ports (if they are bound
to all interfaces) by the above specified IP addresses or CNAME’s. You can however also create a
custom DNS entry for convenience or if an external web server requires a special vhost name.

Adding extra hosts

Extra hosts (hostname and IP address mappings or hostname and CNAME mappings) can be set in the
.env file.

See also

EXTRA_HOSTS

Example

Let’s assume another Docker container is running on your host, which must be accessed by the exact
name of mywebserver.loc in order to respond by that virtual host name.

Mapping on Linux

If you are running Linux as your host operating system you would use the IP address of the host
computer which was identified as 172.16.238.1.

.env

EXTRA_HOSTS=mywebserver.loc=172.16.238.1

or

.env

EXTRA_HOSTS=mywebserver.loc=docker.for.lin.host.internal

or

.env

EXTRA_HOSTS=mywebserver.loc=docker.for.lin.localhost

Mapping on MacOS

If you are running MacOS as your host operating system you would use one of the identified CNAME’s
(depending on your Docker version).

.env

EXTRA_HOSTS=mywebserver.loc=host.docker.internal

The CNAME host.docker.internal will be resolved to an IP address during startup and mywebserver.loc
‘s DNS record will point to that IP address.

Mapping on Windows

If you are running Windows as your host operating system you would use one of the identified CNAME’s
(depending on your Docker version).

.env

EXTRA_HOSTS=mywebserver.loc=docker.for.win.host.internal

The CNAME docker.for.win.host.internal will be resolved to an IP address during startup and mywebserver.loc
‘s DNS record will point to that IP address.

Auto DNS

If you also turned on Auto-DNS these extra hosts will then also be available
to your host operating system as well.

Further reading

See also

	EXTRA_HOSTS

	Auto-DNS

Add your own Docker image

This section is all about customizing the Devilbox and its Docker images specifically to your needs.

Table of Contents

	Prerequisites

	What information do you need?

	How to add a new service?

	Generic example

	A single new service

	Two new services

	CockroachDB example

	How to start the new service?

	Further reading

Prerequisites

The new Docker image definition will be added to a file called docker-compose.override.yml.
So before going any further, read the following section that shows you how to create this file
for the Devilbox as well as what pitfalls to watch out for.

See also

docker-compose.override.yml

What information do you need?

	<name> - A name, which you can use to refer in the docker-compose command

	<image-name> - The Docker image name itself

	<image-version> - The Docker image tag

	<unused-ip-address> - An unused IP address from the devilbox network (found inside docker-compose.yml)

How to add a new service?

Generic example

A single new service

Open docker-compose.override.yml with your favourite editor and paste the following snippets
into it.

docker-compose.override.yml

version: '2.1'
services:
 # Your custom Docker image here:
 <name>:
 image: <image-name>:<image-version>
 networks:
 app_net:
 ipv4_address: <unused-ip-address>
 # For ease of use always automatically start these:
 depends_on:
 - bind
 - php
 - httpd
 # End of custom Docker image

Note

	<name> has to be replaced with any name of your choice

	<image-name> has to be replaced with the name of the Docker image

	<image-version> has to be replaced with the tag of the Docker image

	<unused-ip-address> has to be replaced with an unused IP address

Two new services

docker-compose.override.yml

version: '2.1'
services:
 # Your first custom Docker image here:
 <name1>:
 image: <image1-name>:<image1-version>
 networks:
 app_net:
 ipv4_address: <unused-ip-address1>
 # For ease of use always automatically start these:
 depends_on:
 - bind
 - php
 - httpd
 # End of first custom Docker image
 # Your second custom Docker image here:
 <name2>:
 image: <image2-name>:<image2-version>
 networks:
 app_net:
 ipv4_address: <unused-ip-address2>
 # For ease of use always automatically start these:
 depends_on:
 - bind
 - php
 - httpd
 # End of second custom Docker image

Note

	<name1> has to be replaced with any name of your choice

	<image1-name> has to be replaced with the name of the Docker image

	<image1-version> has to be replaced with the tag of the Docker image

	<unused-ip-address1> has to be replaced with an unused IP address

Note

	<name2> has to be replaced with any name of your choice

	<image2-name> has to be replaced with the name of the Docker image

	<image2-version> has to be replaced with the tag of the Docker image

	<unused-ip-address2> has to be replaced with an unused IP address

CockroachDB example

Gather the requirements for the Cockroach DB [https://hub.docker.com/r/cockroachdb/cockroach/]
Docker image:

	Name: cockroach

	Image: cockroachdb/cockroach

	Tag: latest

	IP: 172.16.238.200

Now add the information to docker-compose.override.yml:

docker-compose.override.yml

version: '2.1'
services:
 # Your custom Docker image here:
 cockroach:
 image: cockroachdb/cockroach:latest
 command: start --insecure
 networks:
 app_net:
 ipv4_address: 172.16.238.200
 # For ease of use always automatically start these:
 depends_on:
 - bind
 - php
 - httpd
 # End of custom Docker image

How to start the new service?

The following will bring up your service including all of its dependent services,
as defined with depends_on (bind, php and httpd). You need to replace <name> with the
name you have chosen.

host> docker-compose up <name>

In the example of Cockroach DB the command would look like this

host> docker-compose up cockroach

Further reading

See also

	docker-compose.override.yml

	Overwrite existing Docker image

Overwrite existing Docker image

This section is all about customizing the Devilbox and its Docker images specifically to your needs.

Table of Contents

	Prerequisites

	What information do you need?

	How to overwrite a service?

	Generic steps

	Overwrite Docker image for the bind service

	Further reading

Prerequisites

The new Docker image overwrite will be added to a file called docker-compose.override.yml.
So before going any further, read the following section that shows you how to create this file
for the Devilbox as well as what pitfalls to watch out for.

See also

docker-compose.override.yml

What information do you need?

	The service to overwrite

How to overwrite a service?

Generic steps

	Copy the whole service definition from docker-compose.yml to docker-compose.override.yml

	Remove anything unecessary

	Adjust the values you need

Overwrite Docker image for the bind service

The following example is using the bind service and overrides the Docker image
to illustrate how this is done :

First you simply copy the while definition of the bind service from docker-compose.yml to
docker-compose.override.yml:

docker-compose.override.yml

version: '2.1'
services:
 bind:
 image: cytopia/bind:0.11
 restart: always
 ports:
 # [local-machine:]local-port:docker-port
 - "${LOCAL_LISTEN_ADDR}${HOST_PORT_BIND:-1053}:53"
 - "${LOCAL_LISTEN_ADDR}${HOST_PORT_BIND:-1053}:53/udp"

 environment:
 ##
 ## Debug?
 ##
 - DEBUG_ENTRYPOINT=${DEBUG_COMPOSE_ENTRYPOINT}
 - DOCKER_LOGS=1

 ##
 ## Bind settings
 ##
 - WILDCARD_ADDRESS=172.16.238.11
 - DNS_FORWARDER=${BIND_DNS_RESOLVER:-8.8.8.8,8.8.4.4}

 dns:
 - 127.0.0.1

 networks:
 app_net:
 ipv4_address: 172.16.238.100

The second step is to remove everything that you do not need to overwrite:

docker-compose.override.yml

version: '2.1'
services:
 bind:
 image: cytopia/bind:0.11

The last step is to actually adjust the value you want to change for the bind service:

docker-compose.override.yml

version: '2.1'
services:
 bind:
 image: someother/bind:latest

Further reading

See also

	docker-compose.override.yml

	Add your own Docker image

Adding Sub domains

This tutorial gives you a brief overview how to serve your project under one subdomain via
the project directory name as well as how to serve one projcet with multiple subdomains with
a customized virtual host config via vhost-gen.

Table of Contents

	Single sub domain for one project

	Multiple sub domains for one project

	Prerequisite

	Apache 2.2

	Adding www sub domain

	Step 1: Add DNS entry

	Step 2: Adjust apache22.yml

	Step 3: Apply new changes

	Adding catch-all sub domain

	Step 1: Add DNS entry

	Step 2: Adjust apache22.yml

	Step 3: Apply new changes

	Apache 2.4

	Nginx

	Adding www sub domain

	Step 1: Add DNS entry

	Step 2: Adjust nginx.yml

	Step 3: Apply new changes

	Adding catch-all sub domain

	Step 1: Add DNS entry

	Step 2: Adjust nginx.yml

	Step 3: Apply new changes

	Apply changes

	Checklist

Single sub domain for one project

When you just want to serve your project under a sub domain, you simply name your project directory
by the name of it. See the following examples how you build up your project URL.

	Project dir

	TLD_SUFFIX

	Project URL

	my-test

	loc

	http://my-test.loc

	www.my-test

	loc

	http://www.my-test.loc

	t1.www.my-test

	loc

	http://t1.www.my-test.loc

	my-test

	com

	http://my-test.com

	www.my-test

	com

	http://www.my-test.com

	t2.www.my-test

	com

	http://t2.www.my-test.com

Whatever name you want to have in front of the TLD_SUFFIX is actually just the directory you
create. Generically, it looks like this:

	Project dir

	TLD_SUFFIX

	Project URL

	<dir-name>

	<tld>

	http://<dir-name>.<tld>

Multiple sub domains for one project

When you want to have multiple domains and/or sub domains for one project (such as in the
case of Wordpress multi-sites), you will need to customize your virtual host config for this
project and make the web server allow to serve your files by different server names.

Each web server virtual host is auto-generated by a tool called
vhost-gen [https://github.com/devilbox/vhost-gen]. vhost-gen allows you to overwrite its
default generation process via templates. Those templates can be added to each project, giving
you the option to customize the virtual host of this specific project.

Note

	Customized virtual host (vhost-gen)

	Ensure you have read and understand how to customize your virtual host with vhost-gen.

	HTTPD_TEMPLATE_DIR

	Ensure you know what this variable does inside your .env file.

Important

When adjusting vhost-gen templates for a project you have to do one of the following:

	Restart the devilbox

	Or rename your project directory to some other name and then rename it back to its original
name.

More information here: Apply Changes

Warning

Pay close attention that you do not use TAB (\t) characters for indenting the vhost-gen
yaml files. Some editors might automatically indent using TABs, so ensure they are replaced
with spaces. If TAB characters are present, those files become invalid and won’t work.
https://github.com/cytopia/devilbox/issues/142

You can use the bundled yamllint binary inside the container to validate your config.

See also:

	Work inside the container

	Available tools

Prerequisite

Let’s assume the following settings.

	Variable

	Value

	Devilbox path

	/home/user/devilbox

	HTTPD_TEMPLATE_DIR

	.devilbox

	HOST_PATH_HTTPD_DATADIR

	./data/www

	TLD_SUFFIX

	loc

	Project name/directory

	project-1 (Ensure it exist)

Ensure that the default vhost-gen templates have been copied to your projects template directory:

Navigate to the Devilbox directory
host> cd ./home/user/devilbox

Create template directory in your project
host> mkdir ./data/www/project-1/.devilbox

Copy vhost-gen templates
host> cp templates/vhost-gen/* ./data/www/project-1/.devilbox

By having done all prerequisite, your project should be available under http://my-project-1.loc

Now you are all set and we can dive into the actual configuration.

Apache 2.2

Adding www sub domain

Let’s also make this project available under http://www.my-project-1.loc

Step 1: Add DNS entry

The first step would be to add an additional DNS entry for www.my-project-1.loc.
See here how to do that for Linux, MacOS or Windows:
Step 4: create a DNS entry

DNS is in place, however when you visit http://www.my-project-1.loc, you will end up seeing the
Devilbox intranet, because this is the default host when no match has been found.

Step 2: Adjust apache22.yml

Next you will have to adjust the Apache 2.2 vhost configuration template. The current default
template looks similar to the one shown below (Note: Only the vhost: sub section is shown
here).

/home/user/devilbox/data/www/project-1/.devilbox/apache22.yml

vhost: |
 <VirtualHost __DEFAULT_VHOST__:__PORT__>
 ServerName __VHOST_NAME__

 CustomLog "__ACCESS_LOG__" combined
 ErrorLog "__ERROR_LOG__"

 __VHOST_DOCROOT__
 __VHOST_RPROXY__
 __PHP_FPM__
 __ALIASES__
 __DENIES__
 __SERVER_STATUS__
 # Custom directives
 __CUSTOM__
 </VirtualHost>

All you will have to do, is to add another ServerName directive:

/home/user/devilbox/data/www/project-1/.devilbox/apache22.yml

vhost: |
 <VirtualHost __DEFAULT_VHOST__:__PORT__>
 ServerName __VHOST_NAME__
 ServerName www.__VHOST_NAME__

 CustomLog "__ACCESS_LOG__" combined
 ErrorLog "__ERROR_LOG__"

 __VHOST_DOCROOT__
 __VHOST_RPROXY__
 __PHP_FPM__
 __ALIASES__
 __DENIES__
 __SERVER_STATUS__
 # Custom directives
 __CUSTOM__
 </VirtualHost>

Step 3: Apply new changes

The last step is to actually to apply those changes. This is equal for all web servers.
Go to Apply changes and follow the steps.

Afterwards you can go and visit http://www.my-project-1.loc and you should see the same page as if you
visit http://my-project-1.loc

Adding catch-all sub domain

Let’s also make this project available under any sub domain.

Step 1: Add DNS entry

The first step would be to add DNS entries for all sub domains you require.
See here how to do that for Linux, MacOS or Windows:
Step 4: create a DNS entry

This however is not really convenient. If you have basically infinite sub domains (via catch-all),
you should consider using Auto-DNS instead: Auto-DNS.

Step 2: Adjust apache22.yml

Next you will have to adjust the Apache 2.2 vhost configuration template. The current default
template looks similar to the one shown below (Note: Only the vhost: sub section is shown
here).

/home/user/devilbox/data/www/project-1/.devilbox/apache22.yml

vhost: |
 <VirtualHost __DEFAULT_VHOST__:__PORT__>
 ServerName __VHOST_NAME__

 CustomLog "__ACCESS_LOG__" combined
 ErrorLog "__ERROR_LOG__"

 __VHOST_DOCROOT__
 __VHOST_RPROXY__
 __PHP_FPM__
 __ALIASES__
 __DENIES__
 __SERVER_STATUS__
 # Custom directives
 __CUSTOM__
 </VirtualHost>

All you will have to do, is to add another ServerName directive which does catch-all:

/home/user/devilbox/data/www/project-1/.devilbox/apache22.yml

vhost: |
 <VirtualHost __DEFAULT_VHOST__:__PORT__>
 ServerName __VHOST_NAME__
 ServerName *.__VHOST_NAME__

 CustomLog "__ACCESS_LOG__" combined
 ErrorLog "__ERROR_LOG__"

 __VHOST_DOCROOT__
 __VHOST_RPROXY__
 __PHP_FPM__
 __ALIASES__
 __DENIES__
 __SERVER_STATUS__
 # Custom directives
 __CUSTOM__
 </VirtualHost>

Step 3: Apply new changes

The last step is to actually to apply those changes. This is equal for all web servers.
Go to Apply changes and follow the steps.

Apache 2.4

The procedure for Apache 2.4 is exactly the same as for Apache 2.2, even the syntax is identical.
The only difference is that you need to adjust apache24.yml instead of apache22.yml.

Just go up one section: Apache 2.2

Nginx

The procedure for Nginx is also exactly the same as for Apache 2.4, however the syntax of its
nginx.yml file is slightly different, that’s why the whole tutorial will be repeated here
fitted for Nginx.

Adding www sub domain

Let’s also make this project available under http://www.my-project-1.loc

Step 1: Add DNS entry

The first step would be to add an additional DNS entry for www.my-project-1.loc.
See here how to do that for Linux, MacOS or Windows:
Step 4: create a DNS entry

DNS is in place, however when you visit http://www.my-project-1.loc, you will end up seeing the
Devilbox intranet, because this is the default host when no match has been found.

Step 2: Adjust nginx.yml

Next you will have to adjust the Nginx vhost configuration template. The current default
template looks similar to the one shown below (Note: Only the vhost: sub section is shown
here).

/home/user/devilbox/data/www/project-1/.devilbox/nginx.yml

vhost: |
 server {
 listen __PORT____DEFAULT_VHOST__;
 server_name __VHOST_NAME__;

 access_log "__ACCESS_LOG__" combined;
 error_log "__ERROR_LOG__" warn;

 __VHOST_DOCROOT__
 __VHOST_RPROXY__
 __PHP_FPM__
 __ALIASES__
 __DENIES__
 __SERVER_STATUS__
 # Custom directives
 __CUSTOM__
 }

All you will have to do, is to extend the server_name directive:

/home/user/devilbox/data/www/project-1/.devilbox/nginx.yml

vhost: |
 server {
 listen __PORT____DEFAULT_VHOST__;
 server_name __VHOST_NAME__ www.__VHOST_NAME__;

 access_log "__ACCESS_LOG__" combined;
 error_log "__ERROR_LOG__" warn;

 __VHOST_DOCROOT__
 __VHOST_RPROXY__
 __PHP_FPM__
 __ALIASES__
 __DENIES__
 __SERVER_STATUS__
 # Custom directives
 __CUSTOM__
 }

Step 3: Apply new changes

The last step is to actually to apply those changes. This is equal for all web servers.
Go to Apply changes and follow the steps.

Afterwards you can go and visit http://www.my-project-1.loc and you should see the same page as if you
visit http://my-project-1.loc

Adding catch-all sub domain

Let’s also make this project available under any sub domain.

Step 1: Add DNS entry

The first step would be to add DNS entries for all sub domains you require.
See here how to do that for Linux, MacOS or Windows:
Step 4: create a DNS entry

This however is not really convenient. If you have basically infinite sub domains (via catch-all),
you should consider using Auto-DNS instead: Auto-DNS.

Step 2: Adjust nginx.yml

Next you will have to adjust the Nginx vhost configuration template. The current default
template looks similar to the one shown below (Note: Only the vhost: sub section is shown
here).

/home/user/devilbox/data/www/project-1/.devilbox/nginx.yml

vhost: |
 server {
 listen __PORT____DEFAULT_VHOST__;
 server_name __VHOST_NAME__;

 access_log "__ACCESS_LOG__" combined;
 error_log "__ERROR_LOG__" warn;

 __VHOST_DOCROOT__
 __VHOST_RPROXY__
 __PHP_FPM__
 __ALIASES__
 __DENIES__
 __SERVER_STATUS__
 # Custom directives
 __CUSTOM__
 }

All you will have to do, is to extend the server_name directive with a catch-all:

/home/user/devilbox/data/www/project-1/.devilbox/nginx.yml

vhost: |
 server {
 listen __PORT____DEFAULT_VHOST__;
 server_name __VHOST_NAME__ *.__VHOST_NAME__;

 access_log "__ACCESS_LOG__" combined;
 error_log "__ERROR_LOG__" warn;

 __VHOST_DOCROOT__
 __VHOST_RPROXY__
 __PHP_FPM__
 __ALIASES__
 __DENIES__
 __SERVER_STATUS__
 # Custom directives
 __CUSTOM__
 }

Step 3: Apply new changes

The last step is to actually to apply those changes. This is equal for all web servers.
Go to Apply changes and follow the steps.

Apply changes

After having edited your vhost-gen template files, you still need to apply these changes.
This can be achieved in two ways:

	Restart the Devilbox

	Rename your project directory back and forth

Let’s cover the second step

Navigate to the data directory
host> /home/user/devilbox/data/www

Rename your project to something else
host> mv project-1 project-1.tmp

Rename your project to its original name
host> mv project-1.tmp project-1

If you want to understand what is going on right now, check the docker logs for the web server.

Navigate to the devilbox directory
host> /home/user/devilbox

Check docker logs
host> docker-compose logs httpd

httpd_1 | vhostgen: [2018-03-18 11:46:52] Adding: project-1.tmp.loc
httpd_1 | watcherd: [2018-03-18 11:46:52] [OK] ADD: succeeded: /shared/httpd/project-1.tmp
httpd_1 | watcherd: [2018-03-18 11:46:52] [OK] DEL: succeeded: /shared/httpd/project-1
httpd_1 | watcherd: [2018-03-18 11:46:52] [OK] TRIGGER succeeded: /usr/local/apache2/bin/httpd -k restart

httpd_1 | vhostgen: [2018-03-18 11:46:52] Adding: project-1loc
httpd_1 | watcherd: [2018-03-18 11:46:52] [OK] ADD: succeeded: /shared/httpd/project-1
httpd_1 | watcherd: [2018-03-18 11:46:52] [OK] DEL: succeeded: /shared/httpd/project-1.tmp
httpd_1 | watcherd: [2018-03-18 11:46:52] [OK] TRIGGER succeeded: /usr/local/apache2/bin/httpd -k restart

What happened?

The directory changes have been noticed and a new virtual host has been created. This time however
your new vhost-gen template has been read and the changes have applied.

Checklist

	Template files are copied from templates/vhost-gen/* to your project template dir (as
specified in .env via HTTPD_TEMPLATE_DIR)

	Ensure the vhost-gen yaml files are valid (No tab characters)

	When templates are edited, the Devilbox is either restarted or the project directory is renamed
to something else and then renamed back to its original name

Change container versions

One of the core concepts of the Devilbox is to easily change between different versions of a
specific service.

Table of Contents

	Change PHP version

	Stop the Devilbox

	Edit the .env file

	Start the Devilbox

	Gotchas

	Change whatever version

	Checklist

Change PHP version

Stop the Devilbox

Shut down the Devilbox in case it is still running:

Navigate to the Devilbox directory
host> /home/user/devilbox

Stop all container
host> docker-compose stop

Edit the .env file

Open the .env file with your favourite editor and navigate to the PHP_SERVER section.
It will look something like this:

.env

 #PHP_SERVER=5.4
 #PHP_SERVER=5.5
 #PHP_SERVER=5.6
 #PHP_SERVER=7.0
 PHP_SERVER=7.1
 #PHP_SERVER=7.1

As you can see, all available values are already there, but commented. Only one is uncommented.
In this example it is 7.1, which is the PHP version that will be started, once the Devilbox
starts.

To change this, simply uncomment your version of choice and save this file. Do not forget to comment
(disable) any other version.

In order to enable PHP 5.5, you would change the .env file like this:

.env

 #PHP_SERVER=5.4
 PHP_SERVER=5.5
 #PHP_SERVER=5.6
 #PHP_SERVER=7.0
 #PHP_SERVER=7.1
 #PHP_SERVER=7.1

Start the Devilbox

Now save the file and you can start the Devilbox again.

Navigate to the Devilbox directory
host> /home/user/devilbox

Stop all container
host> docker-compose up php httpd bind

See also

Start the Devilbox

Gotchas

If two versions are uncommented, always the last one takes precedence.

Consider this .env file:

.env

 #PHP_SERVER=5.4
 PHP_SERVER=5.5
 #PHP_SERVER=5.6
 PHP_SERVER=7.0
 #PHP_SERVER=7.1
 #PHP_SERVER=7.1

Both, PHP 5.4 and PHP 7.0 are uncommented, however, when you start the Devilbox, it will use
PHP 7.0 as this value overwrites any previous ones.

Change whatever version

When you have read how to change the PHP version, it should be fairly simple to change any
service version. It behaves in the exact same way.

The variable names of all available services with changable versions are in the following format:
<SERVICE>_SERVER. Just look through the .env file.

See also

	The following variables control service versions:

	PHP_SERVER, HTTPD_SERVER, MYSQL_SERVER, PGSQL_SERVER, REDIS_SERVER, MEMCD_SERVER, MONGO_SERVER

Checklist

	Stop the Devilbox

	Uncomment version of choice in .env

	Start the Devilbox

Work inside the container

The Devilbox allows you to completely work inside the PHP container (no matter what version),
instead of your host operating system.

This brings a lot of advantages, such as that you don’t
have to install any development tool on your OS or if you are on Windows, you get a full blown
Linux environment.

Additionally, special port-bindings and forwards are in place that allows you to even
interchangably work locally or inside the container without having to alter any php config for
database and other connections.

See also

Available tools

Table of Contents

	Enter the container

	Entering from Linux or MacOS: shell.sh

	Entering from Windows: shell.bat

	Inside the container

	devilbox user

	root user

	Leave the container

	Host to Container mappings

	File and directory Permissions

	Directory mappings

	IP address mappings

	Port mappings

	DNS mappings

	Checklist

Enter the container

Entering the computer is fairly simple. The Devilbox ships with two scripts to do that. One for
Linux and MacOS (shell.sh) and another one for Windows (shell.bat).

Entering from Linux or MacOS: shell.sh

Navigate to the Devilbox directory
host> cd /path/to/devilbox

Run provided script
host> ./shell.sh

Now you are inside the PHP Linux container
devilbox@php-7.0.19 in /shared/httpd $

Entering from Windows: shell.bat

Navigate to the Devilbox directory
C:/> cd C:/Users/user1/devilbox

Run provided script
C:/Users/user1/devilbox> shell.bat

Now you are inside the PHP Linux container
devilbox@php-7.0.19 in /shared/httpd $

Inside the container

devilbox user

By using the provided scripts to enter the container you will become the user devilbox.
This user will have the same uid and gid as the user from your host operating system.

So no matter what files or directories you create inside the container, they will have the same
permissions and uid/gid set your host operating system. This of course also works the other way
round.

The uid and gid mappings are controlled via two .env variables called NEW_UID and
NEW_GID

See also

If you want to find out more about synronized container permissions read up here:
Syncronize container permissions

root user

Sometimes however it is also necessary to do some actions that require super user privileges.
You can always become root inside the container by either impersonating it or by using sudo
to issue commands.

By default sudo is configured to be used without passwords, so you can simply do the following:

As user devilbox inside the container
devilbox@php-7.0.19 in /shared/httpd $ sudo su -

You are now the root user
root@php-7.0.19 in /shared/httpd $

You can also use sudo to run commands with root privileges without having to become root first.

As user devilbox inside the container
devilbox@php-7.0.19 in /shared/httpd $ sudo apt update
devilbox@php-7.0.19 in /shared/httpd $ sudo apt install nmap

Leave the container

When you are inside the container and want to return to your host operating, just type exit
and you are out.

As user devilbox inside the container
devilbox@php-7.0.19 in /shared/httpd $ exit

You are now back on your host operating system
host>

Host to Container mappings

This section will give you an idea that there is actually no difference from inside the container
and on your host operating system. Directory permissions, IP addresses, ports and DNS entries
are fully syncronized allowing you to switch between container and host without having to
change any settings.

File and directory Permissions

The username inside the container (devilbox) might be different from your local host operating
system username, however its actual uid and gid will match. This is to ensure file and directory
permissions are synronized inside and outside the container and no matter from which side you
create files and directories, it will always look as if they are owned by your system user.

The uid and gid mappings are controlled via two .env variables called NEW_UID and
NEW_GID

Directory mappings

One thing you should understand is the relation between the directories on your host operating
system and the corresponding directory inside the PHP container.

The location of the data directory (HOST_PATH_HTTPD_DATADIR) on your host computer is controlled
via the HOST_PATH_HTTPD_DATADIR variable inside the .env file. No matter what location you
set it to, inside the container it will always be mapped to /shared/httpd.

See the following table for a few examples:

	
	Host operating system

	Inside PHP container

	Data dir

	./www/data

	/shared/httpd

	Data dir

	/home/user1/www

	/shared/httpd

	Data dir

	/var/www

	/shared/httpd

IP address mappings

The following table shows a mapping of IP addresses of available service from the perspective
of your host operating system and from within the PHP container.

	Service

	IP from host os

	IP from within PHP container

	PHP

	127.0.0.1

	127.0.0.1

	Apache/Nginx

	127.0.0.1

	127.0.0.1

	MySQL

	127.0.0.1

	127.0.0.1

	PostgreSQL

	127.0.0.1

	127.0.0.1

	Redis

	127.0.0.1

	127.0.0.1

	Memcached

	127.0.0.1

	127.0.0.1

	MongoDB

	127.0.0.1

	127.0.0.1

As you can see, everyhing is available under 127.0.0.1.

The PHP container is using socat to forward the services from all other available containers
to its own 127.0.0.1 address.

An example to access the MySQL database from either host or within the PHP container is the same:

Access MySQL from your host operating system
host> mysql -h 127.0.0.1

Access MySQL from within the PHP container
devilbox@php-7.0.19 in /shared/httpd $ mysql -h 127.0.0.1

Important

Do not use localhost to access the services, it does not map to 127.0.0.1 on
all cases.

So when setting up a configuration file from your PHP project you would for example use
127.0.0. as the host for your MySQL database connection:

<?php
// MySQL server connection
mysql_host = '127.0.0.1';
mysql_port = '3306';
mysql_user = 'someusername';
mysql_pass = 'somepassword';
?>

Imagine your PHP framework ships a command line tool to run database migration. You could run
it from your host operating system or from within the PHP container. It would work from both
sides as the connection to the database is exactly the same locally or within the container.

You could also even switch between the Devilbox and a locally installed LAMP stack
and still use the same configuration.

Warning

The mapping of 127.0.0.1 to your host operating system does not work with
Docker Toolbox.

Port mappings

By default, ports are also synronized between host operating system (the ports that are exposed)
and the ports within the PHP container. This is however also configurable inside the .env file.

	Service

	Port from host os

	Port from within PHP container

	PHP

	NA

	9000

	Apache/Nginx

	80

	80

	MySQL

	3306

	3306

	PostgreSQL

	5432

	5432

	Redis

	6379

	6379

	Memcached

	11211

	11211

	MongoDB

	27017

	27017

DNS mappings

All project DNS records are also available from inside the PHP container independent of the
value of TLD_SUFFIX.

The PHP container is hooked up by default to the bundled DNS server and makes use
Auto-DNS.

See also

You can achieve the same on your host operating system by explicitly enabling auto-dns.
See also: Auto-DNS.

Checklist

	You know how to enter the PHP container

	You know how to become root inside the PHP container

	You know how to leave the container

	You know that file and directory permissions are synronized

	You know that 127.0.0.1 is available on your host and inside the PHP container

	You know that ports are the same inside the container and on your host os

	You know that project urls are available inside the container and on your host

	You know about the limitations of Docker Toolbox

Enable Xdebug

This tutorial shows you how to enable and use Xdebug with the Devilbox.

See also

If you are unsure of how to add custom *.ini files to the Devilbox,
have a look at this section first: php.ini

Table of Contents

	Enable Xdebug

	Required for all OS

	default_enable

	remote_enable

	remote_handler

	remote_port

	remote_autostart

	idekey

	remote_log

	Linux

	MacOS (Docker for Mac)

	MacOS (Docker Toolbox)

	Windows (Docker for Windows)

	Windows (Docker Toolbox)

	Configure your IDE

	Required for all IDE

	Path mapping

	IDE key

	Port

	Atom

	Linux

	MacOS (Docker for Mac)

	MacOS (Docker Toolbox)

	Windows (Docker for Windows)

	Windows (Docker Toolbox)

	PHPStorm

	Linux

	MacOS (Docker for Mac)

	MacOS (Docker Toolbox)

	Windows (Docker for Windows)

	Windows (Docker Toolbox)

	Sublime Text 3

	Linux

	MacOS (Docker for Mac)

	MacOS (Docker Toolbox)

	Windows (Docker for Windows)

	Windows (Docker Toolbox)

	Visual Studio Code

	Linux

	MacOS (Docker for Mac)

	MacOS (Docker Toolbox)

	Windows (Docker for Windows)

	Windows (Docker Toolbox)

Enable Xdebug

This section shows you the minimum required *.ini ini settings to get xdebug to work with
the Devilbox. It will also highlight the differences between operating system and Docker versions.

See also

See here for how to add the *.ini values to the Devilbox: php.ini.

Once you have configured Xdebug, you can verify it at the Devilbox intranet:
http://localhost/info_php.php

Required for all OS

Additionally to the specific configurations for each operating system and Docker version you will
probably also want to add the following to your ini file:

xdebug.ini

xdebug.default_enable=1
xdebug.remote_enable=1
xdebug.remote_handler=dbgp
xdebug.remote_port=9000
xdebug.remote_autostart=1
xdebug.idekey="PHPSTORM"
xdebug.remote_log=/var/log/php/xdebug.log

See also

https://xdebug.org/docs/all_settings

default_enable

By enabling this, stacktraces will be shown by default on an error event.
It is advisable to leave this setting set to 1.

remote_enable

This switch controls whether Xdebug should try to contact a debug client which is listening on the
host and port as set with the settings xdebug.remote_host and xdebug.remote_port.
If a connection can not be established the script will just continue as if this setting was 0.

remote_handler

Can be either 'php3' which selects the old PHP 3 style debugger output, 'gdb' which enables
the GDB like debugger interface or 'dbgp' - the debugger protocol. The DBGp protocol is the only
supported protocol.

Note: Xdebug 2.1 and later only support 'dbgp' as protocol.

remote_port

The port to which Xdebug tries to connect on the remote host. Port 9000 is the default for both
the client and the bundled debugclient. As many clients use this port number, it is best to leave
this setting unchanged.

remote_autostart

Normally you need to use a specific HTTP GET/POST variable to start remote debugging (see
Remote Debugging [https://xdebug.org/docs/remote#browser_session]). When this setting is set to
1, Xdebug will always attempt to start a remote debugging session and try to connect to a client,
even if the GET/POST/COOKIE variable was not present.

idekey

Controls which IDE Key Xdebug should pass on to the DBGp debugger handler. The default is based on
environment settings. First the environment setting DBGP_IDEKEY is consulted, then USER and as last
USERNAME. The default is set to the first environment variable that is found. If none could be found
the setting has as default ‘’. If this setting is set, it always overrides the environment variables.

For the sake of this tutorial we are going to use PHPSTORM as an example value.

remote_log

Keep the exact path of /var/log/php/xdebug.log. You will then have the log file available
in the Devilbox log directory of the PHP version for which you have configured Xdebug.

Important

You can set the value of xdebug.idekey to whatever you like, however it is important
to remember what value you have set. Throughout the examples in this tutorial it is assumed,
that the value is PHPSTORM.

Linux

xdebug.ini

xdebug.remote_connect_back=1

MacOS (Docker for Mac)

Docker 18.03.0-ce+ and Docker compose 1.20.1+

xdebug.ini

xdebug.remote_host=host.docker.internal
xdebug.remote_connect_back=0

Docker 17.12.0-ce+ and Docker compose 1.18.0+

xdebug.ini

xdebug.remote_host=docker.for.mac.host.internal
xdebug.remote_connect_back=0

Docker 17.06.0-ce+ and Docker compose 1.14.0+

xdebug.ini

xdebug.remote_host=docker.for.mac.localhost
xdebug.remote_connect_back=0

If you have older versions, upgrade.

MacOS (Docker Toolbox)

Warning

This is a legacy solution, upgrade to Docker for Mac
https://docs.docker.com/toolbox

Windows (Docker for Windows)

Docker 18.03.0-ce+ and Docker compose 1.20.1+

xdebug.ini

xdebug.remote_host=docker.for.win.host.internal
xdebug.remote_connect_back=0

Docker 17.06.0-ce+ and Docker compose 1.14.0+

xdebug.ini

xdebug.remote_host=docker.for.win.host.localhost
xdebug.remote_connect_back=0

If you have older versions, upgrade.

Windows (Docker Toolbox)

Warning

This is a legacy solution, upgrade to Docker for Windows
https://docs.docker.com/toolbox

Configure your IDE

Required for all IDE

Path mapping

The path mapping is a mapping between the file path on your host operating system and the one
inside the PHP Docker container.

The path on your host operating system is the one you have set in HOST_PATH_HTTPD_DATADIR.
In case you have set a relative path in .env, ensure to retrieve the absolute path of it when
setting up your IDE config.

The path inside the PHP Docker container is always /shared/httpd.

Important

Even though your path in .env for HOST_PATH_HTTPD_DATADIR might be relative (e.g. ./data/www),
you need to get the actualy absolute path of it, when setting up your IDE.

IDE key

This is the value you have set in xdebug.ini for xdebug.idekey. In the example of this
tutorial, the value was set to PHPSTORM.

Port

This is the value you have set in xdebug.ini for xdebug.remote_port. In the example of this
tutorial, the value was set to 9000.

Atom

	Install php-debug [https://atom.io/packages/php-debug]

	Configure config.cson (File -> Config…)

	Adjust your xdebug.ini

For Atom, you need to provide a different xdebug.idekey in your php.ini file xdebug.ini:

xdebug.ini

xdebug.idekey=xdebug.atom

Linux

launch.json

"php-debug":
 {
 ServerPort: 9000
 PathMaps: [
 "remotepath;localpath"
 "/shared/httpd;/home/cytopia/repo/devilbox/data/www"
]
 }

MacOS (Docker for Mac)

Todo

Help needed. Please provide your config.

MacOS (Docker Toolbox)

Todo

Help needed. Please provide your config.

Windows (Docker for Windows)

Todo

Help needed. Please provide your config.

Windows (Docker Toolbox)

Todo

Help needed. Please provide your config.

PHPStorm

Linux

Enable Xdebug for the port set in xdebug.ini:

[image: ../_images/xdebug_phpstorm_settings.png]
Create a new PHP server and set a path mapping. This tutorial assumes your local Devilbox projects
to be in ./data/www of the Devilbox git directory:

[image: ../_images/xdebug_phpstorm_path_mapping.png]
Set DBGp proxy settings:

[image: ../_images/xdebug_phpstorm_proxy.png]

MacOS (Docker for Mac)

Todo

Help needed. Please provide your config.

MacOS (Docker Toolbox)

Todo

Help needed. Please provide your config.

Windows (Docker for Windows)

Todo

Help needed. Please provide your config.

Windows (Docker Toolbox)

Todo

Help needed. Please provide your config.

Sublime Text 3

	Install Xdebug Client [https://github.com/martomo/SublimeTextXdebug] via the Sublime Package Control.

	Configure Xdebug.sublime-settings (Tools -> Xdebug -> Settings - User)

Linux

Xdebug-sublime-settings

{
 "path_mapping": {
 "/shared/httpd" : "/home/cytopia/repo/devilbox/data/www"
 },
 "url": "",
 "ide_key": "PHPSTORM",
 "host": "0.0.0.0",
 "port": 9000
}

MacOS (Docker for Mac)

Todo

Help needed. Please provide your config.

MacOS (Docker Toolbox)

Todo

Help needed. Please provide your config.

Windows (Docker for Windows)

Todo

Help needed. Please provide your config.

Windows (Docker Toolbox)

Todo

Help needed. Please provide your config.

Visual Studio Code

	Install vscode-php-debug [https://github.com/felixfbecker/vscode-php-debug]

	Configure launch.json

Linux

launch.json

{
 "version": "0.2.0",
 "configurations": [
 {
 "name": "Listen for Xbebug",
 "type": "php",
 "request": "launch",
 "port": 9000,
 "serverSourceRoot": "/shared/httpd",
 "localSourceRoot": "/home/cytopia/repo/devilbox/data/www"
 }, {
 "name": "Launch currently open script",
 "type": "php",
 "request": "launch",
 "program": "${file}",
 "cwd": "${fileDirname}",
 "port": 9000
 }
]
}

MacOS (Docker for Mac)

Todo

Help needed. Please provide your config.

MacOS (Docker Toolbox)

Todo

Help needed. Please provide your config.

Windows (Docker for Windows)

Todo

Help needed. Please provide your config.

Windows (Docker Toolbox)

Todo

Help needed. Please provide your config.

Custom environment variables

If your application requires a variable to determine if it is run under development or
production, you can easily add it and make PHP aware of it.

Table of Contents

	Add custom environment variables

	Use custom environment variables

Add custom environment variables

This is fairly simple. Any variable inside the .env file is considered an environment variable
and automatically known to PHP.

If you for example require a variable APPLICATION_ENV, with a value of production, you
would add the following to the .env file:

.env

APPLICATION_ENV=production

You need to restart the Devilbox for the changes to take effect.

Note

There is already a proposed section inside the .env file at the very bottom
to add you custom variables to differentiate them from the Devilbox required variables.

Use custom environment variables

Accessing the above defined environment variable on the PHP side is also fairly simple.
You can use the PHP’s built-in function getenv to obtain the value:

index.php

<?php
// Example use of getenv()
echo getenv('APPLICATION_ENV');
?>

Static Code Analysis

This tutorial gives you a general overview how to do static code analysis from within the PHP
container.

See also

	Available tools

	Work inside the container

Table of Contents

	Awesome-ci

	PHPCS

	ESLint

Awesome-ci

Awesome-ci is a collection of tools for analysing your
workspace and its files. You can for example check for:

	git conflicts

	git ignored files that have not been removed from the git index

	trailing spaces and newlines

	non-utf8 files or utf8 files with bom

	windows line feeds

	null-byte characters

	empty files

	syntax errors for various languages

	inline css or js code

	customized regex

Some of the bundled tools even allow for automatic fixing.

See also

awesome-ci [https://github.com/cytopia/awesome-ci]

1. Enter your PHP container
host> ./bash

2. Go to your project folder
devilbox@php-7.0.20 $ cd /shared/httpd/my-project

3. Run the tools
devilbox@php-7.0.20 $ git-conflicts --path=.
devilbox@php-7.0.20 $ git-ignored --path=.
devilbox@php-7.0.20 $ file-cr --path=.
devilbox@php-7.0.20 $ file-crlf --path=.
devilbox@php-7.0.20 $ file-empty --path=.

4. Run tools with more options
devilbox@php-7.0.20 $ syntax-php --path=. --extension=php
devilbox@php-7.0.20 $ syntax-php --path=. --shebang=php

5. Various syntax checks
devilbox@php-7.0.20 $ syntax-bash --path=. --text --extension=sh
devilbox@php-7.0.20 $ syntax-css --path=. --text --extension=css
devilbox@php-7.0.20 $ syntax-js --path=. --text --extension=js
devilbox@php-7.0.20 $ syntax-json --path=. --text --extension=json
devilbox@php-7.0.20 $ syntax-markdown --path=. --text --extension=md
devilbox@php-7.0.20 $ syntax-perl --path=. --text --extension=pl
devilbox@php-7.0.20 $ syntax-php --path=. --text --extension=php
devilbox@php-7.0.20 $ syntax-python --path=. --text --extension=python
devilbox@php-7.0.20 $ syntax-ruby --path=. --text --extension=rb
devilbox@php-7.0.20 $ syntax-scss --path=. --text --extension=scss

PHPCS

PHPCS is a code style analyser for PHP.

See also

PHPCS [https://github.com/squizlabs/PHP_CodeSniffer]

1. Enter your PHP container
host> ./bash

2. Go to your project folder
devilbox@php-7.0.20 $ cd /shared/httpd/my-project

3. Run it
devilbox@php-7.0.20 $ phpcs .

ESLint

ESLint is a Javascript static source code analyzer.

See also

ESLint [http://eslint.org]

1. Enter your PHP container
host> ./bash

2. Go to your project folder
devilbox@php-7.0.20 $ cd /shared/httpd/my-project

3. Run it
devilbox@php-7.0.20 $ eslint .

Setup CakePHP

This example will use composer to install CakePHP from within the PHP container.

See also

Official CakePHP Documentation [https://book.cakephp.org/3.0/en/installation.html]

Table of Contents

	Overview

	Walk through

	1. Enter the PHP container

	2. Create new vhost directory

	3. Install CakePHP

	4. Symlink webroot

	5. Add MySQL Database

	6. Configure database connection

	7. DNS record

	8. Open your browser

Overview

The following configuration will be used:

	Project name

	VirtualHost directory

	Database

	TLD_SUFFIX

	Project URL

	my-cake

	/shared/httpd/my-cake

	my_cake

	loc

	http://my-cake.loc

Walk through

It will be ready in eight simple steps:

	Enter the PHP container

	Create a new VirtualHost directory

	Install CakePHP via composer

	Symlink webroot directory

	Add MySQL database

	Configure datbase connection

	Setup DNS record

	Visit http://my-cake.loc in your browser

See also

Available tools

1. Enter the PHP container

host> ./shell.sh

See also

Work inside the container

2. Create new vhost directory

devilbox@php-7.0.20 in /shared/httpd $ mkdir my-cake

3. Install CakePHP

devilbox@php-7.0.20 in /shared/httpd $ cd my-cake
devilbox@php-7.0.20 in /shared/httpd/my-cake $ composer create-project --prefer-dist cakephp/app cakephp

4. Symlink webroot

devilbox@php-7.0.20 in /shared/httpd/my-cake $ ln -s cakephp/webroot/ htdocs

5. Add MySQL Database

devilbox@php-7.0.20 in /shared/httpd/my-cake $ mysql -u root -h 127.0.0.1 -p -e 'CREATE DATABASE my_cake;'

6. Configure database connection

devilbox@php-7.0.20 in /shared/httpd/my-cake $ vi cakephp/config/app.php

cakephp/config/app.php

 <?php
 'Datasources' => [
 'default' => [
 'className' => 'Cake\Database\Connection',
 'driver' => 'Cake\Database\Driver\Mysql',
 'persistent' => false,
 'host' => '127.0.0.1',
 /**
 * CakePHP will use the default DB port based on the driver selected
 * MySQL on MAMP uses port 8889, MAMP users will want to uncomment
 * the following line and set the port accordingly
 */
 //'port' => 'non_standard_port_number',
 'username' => 'root',
 'password' => 'secret',
 'database' => 'my_cake',
 'encoding' => 'utf8',
 'timezone' => 'UTC',
 'flags' => [],
 'cacheMetadata' => true,
 ?>

7. DNS record

If you do not have Auto-DNS configured, you will need to add the
following line to your host operating systems /etc/hosts file
(or C:\Windows\System32\drivers\etc on Windows):

/etc/hosts

 127.0.0.1 my-cake.loc

See also

For in-depth info about adding DNS records on Linux, Windows or MacOS see:
DNS records or Auto-DNS.

8. Open your browser

All set now, you can visit http://my-cake.loc in your browser.

Setup Drupal

This example will use drush to install Drupal from within the PHP container.

See also

Official Drupal Documentation [https://www.drupal.org/docs/7/install]

Table of Contents

	Overview

	Walk through

	1. Enter the PHP container

	2. Create new vhost directory

	3. Install Drupal

	4. Symlink webroot

	5. DNS record

	6. Open your browser

Overview

The following configuration will be used:

	Project name

	VirtualHost directory

	Database

	TLD_SUFFIX

	Project URL

	my-drupal

	/shared/httpd/my-drupal

	my_drupal

	loc

	http://my-drupal.loc

Walk through

It will be ready in six simple steps:

	Enter the PHP container

	Create a new VirtualHost directory

	Install Drupal via drush

	Symlink webroot directory

	Setup DNS record

	Visit http://my-drupal.loc in your browser

See also

Available tools

1. Enter the PHP container

host> ./shell.sh

See also

Work inside the container

2. Create new vhost directory

devilbox@php-7.0.20 in /shared/httpd $ mkdir my-drupal

3. Install Drupal

devilbox@php-7.0.20 in /shared/httpd $ cd my-drupal
devilbox@php-7.0.20 in /shared/httpd/my-drupal $ drush dl drupal

4. Symlink webroot

devilbox@php-7.0.20 in /shared/httpd/my-drupal $ ln -s drupal-8.3.3/ htdocs

5. DNS record

If you do not have Auto-DNS configured, you will need to add the
following line to your host operating systems /etc/hosts file
(or C:\Windows\System32\drivers\etc on Windows):

/etc/hosts

 127.0.0.1 my-drupal.loc

See also

For in-depth info about adding DNS records on Linux, Windows or MacOS see:
DNS records or Auto-DNS.

6. Open your browser

Open your browser at http://my-drupal.loc and follow the Drupal installation steps.

Note

When asked about MySQL hostname, choose 127.0.0.1.

Setup Joomla

This example will install Joomla from within the PHP container.

See also

Official Joomla Documentation [https://docs.joomla.org/J3.x:Installing_Joomla]

Table of Contents

	Overview

	Walk through

	1. Enter the PHP container

	2. Create new vhost directory

	3. Download and extract Joomla

	4. Symlink webroot

	5. DNS record

	6. Open your browser

Overview

The following configuration will be used:

	Project name

	VirtualHost directory

	Database

	TLD_SUFFIX

	Project URL

	my-joomla

	/shared/httpd/my-joomla

	n.a.

	loc

	http://my-joomla.loc

Walk through

It will be ready in six simple steps:

	Enter the PHP container

	Create a new VirtualHost directory

	Download and extract Joomla

	Symlink webroot directory

	Setup DNS record

	Visit http://my-joomla.loc in your browser

See also

Available tools

1. Enter the PHP container

host> ./shell.sh

See also

Work inside the container

2. Create new vhost directory

devilbox@php-7.0.20 in /shared/httpd $ mkdir my-joomla

3. Download and extract Joomla

devilbox@php-7.0.20 in /shared/httpd $ cd my-joomla
devilbox@php-7.0.20 in /shared/httpd/my-joomla $ wget -O joomla.tar.gz https://downloads.joomla.org/cms/joomla3/3-8-0/joomla_3-8-0-stable-full_package-tar-gz?format=gz
devilbox@php-7.0.20 in /shared/httpd $ mkdir joomla
devilbox@php-7.0.20 in /shared/httpd $ tar xvfz joomla.tar.gz -C joomla/

4. Symlink webroot

devilbox@php-7.0.20 in /shared/httpd/my-joomla $ ln -s joomla/ htdocs

5. DNS record

If you do not have Auto-DNS configured, you will need to add the
following line to your host operating systems /etc/hosts file
(or C:\Windows\System32\drivers\etc on Windows):

/etc/hosts

 127.0.0.1 my-joomla.loc

See also

For in-depth info about adding DNS records on Linux, Windows or MacOS see:
DNS records or Auto-DNS.

6. Open your browser

Open your browser at http://my-joomla.loc

Setup Laravel

This example will use laravel to install Laravel from within the PHP container.

See also

Official Laravel Documentation [https://laravel.com/docs/5.4/installation]

Table of Contents

	Overview

	Walk through

	1. Enter the PHP container

	2. Create new vhost directory

	3. Install Laravel

	4. Symlink webroot

	5. DNS record

	6. Open your browser

Overview

The following configuration will be used:

	Project name

	VirtualHost directory

	Database

	TLD_SUFFIX

	Project URL

	my-laravel

	/shared/httpd/my-laravel

	n.a.

	loc

	http://my-laravel.loc

Walk through

It will be ready in six simple steps:

	Enter the PHP container

	Create a new VirtualHost directory

	Install Laravel

	Symlink webroot directory

	Setup DNS record

	Visit http://my-laravel.loc in your browser

See also

Available tools

1. Enter the PHP container

host> ./shell.sh

See also

Work inside the container

2. Create new vhost directory

devilbox@php-7.0.20 in /shared/httpd $ mkdir my-laravel

3. Install Laravel

devilbox@php-7.0.20 in /shared/httpd $ cd my-laravel
devilbox@php-7.0.20 in /shared/httpd/my-laravel $ laravel new laravel-project

4. Symlink webroot

devilbox@php-7.0.20 in /shared/httpd/my-laravel $ ln -s laravel-project/public/ htdocs

5. DNS record

If you do not have Auto-DNS configured, you will need to add the
following line to your host operating systems /etc/hosts file
(or C:\Windows\System32\drivers\etc on Windows):

/etc/hosts

 127.0.0.1 my-laravel.loc

See also

For in-depth info about adding DNS records on Linux, Windows or MacOS see:
DNS records or Auto-DNS.

6. Open your browser

Open your browser at http://my-laravel.loc

Setup Phalcon

This example will use phalcon to install Phalcon from within the PHP container.

See also

Official Phalcon Documentation [https://docs.phalconphp.com/en/3.2/devtools-usage]

Table of Contents

	Overview

	Walk through

	1. Enter the PHP container

	2. Create new vhost directory

	3. Install Phalcon

	4. Symlink webroot

	5. DNS record

	6. Open your browser

Overview

The following configuration will be used:

	Project name

	VirtualHost directory

	Database

	TLD_SUFFIX

	Project URL

	my-phalcon

	/shared/httpd/my-phalcon

	n.a.

	loc

	http://my-phalcon.loc

Walk through

It will be ready in six simple steps:

	Enter the PHP container

	Create a new VirtualHost directory

	Install Phalcon

	Symlink webroot directory

	Setup DNS record

	Visit http://my-phalcon.loc in your browser

See also

Available tools

1. Enter the PHP container

host> ./shell.sh

See also

Work inside the container

2. Create new vhost directory

devilbox@php-7.0.20 in /shared/httpd $ mkdir my-phalcon

3. Install Phalcon

devilbox@php-7.0.20 in /shared/httpd $ cd my-phalcon
devilbox@php-7.0.20 in /shared/httpd/my-phalcon $ phalcon project phalconphp

4. Symlink webroot

devilbox@php-7.0.20 in /shared/httpd/my-pahlcon $ ln -s phalconphp/public/ htdocs

5. DNS record

If you do not have Auto-DNS configured, you will need to add the
following line to your host operating systems /etc/hosts file
(or C:\Windows\System32\drivers\etc on Windows):

/etc/hosts

 127.0.0.1 my-phalcon.loc

See also

For in-depth info about adding DNS records on Linux, Windows or MacOS see:
DNS records or Auto-DNS.

6. Open your browser

Open your browser at http://my-phalcon.loc

Setup Symfony

This example will use symfony to install Symfony from within the PHP container.

See also

Official Symfony Documentation [https://symfony.com/doc/current/setup.html]

Table of Contents

	Overview

	Walk through

	1. Enter the PHP container

	2. Create new vhost directory

	3. Install Symfony

	4. Symlink webroot

	5. Enable Symfony prod (app.php)

	6. DNS record

	7. Open your browser

Overview

The following configuration will be used:

	Project name

	VirtualHost directory

	Database

	TLD_SUFFIX

	Project URL

	my-symfony

	/shared/httpd/my-symfony

	n.a.

	loc

	http://my-symfony.loc

Walk through

It will be ready in seven simple steps:

	Enter the PHP container

	Create a new VirtualHost directory

	Install Symfony

	Symlink webroot directory

	Enable Symfony prod (app.php)

	Setup DNS record

	Visit http://my-symfony.loc in your browser

See also

Available tools

1. Enter the PHP container

host> ./shell.sh

See also

Work inside the container

2. Create new vhost directory

devilbox@php-7.0.20 in /shared/httpd $ mkdir my-symfony

3. Install Symfony

devilbox@php-7.0.20 in /shared/httpd $ cd my-symfony
devilbox@php-7.0.20 in /shared/httpd/my-symfony $ symfony new symfony

4. Symlink webroot

devilbox@php-7.0.20 in /shared/httpd/my-symfony $ ln -s symfony/web/ htdocs

5. Enable Symfony prod (app.php)

devilbox@php-7.0.20 in /shared/httpd/my-symfony $ cd symfony/web
devilbox@php-7.0.20 in /shared/httpd/my-symfony/symfony/web $ ln -s app.php index.php

6. DNS record

If you do not have Auto-DNS configured, you will need to add the
following line to your host operating systems /etc/hosts file
(or C:\Windows\System32\drivers\etc on Windows):

/etc/hosts

 127.0.0.1 my-symfony.loc

See also

For in-depth info about adding DNS records on Linux, Windows or MacOS see:
DNS records or Auto-DNS.

7. Open your browser

Open your browser at http://my-symfony.loc

Setup Wordpress

This example will use git to install Wordpress from within the PHP container.

See also

Official Wordpress Documentation [https://codex.wordpress.org/Installing_WordPress]

Table of Contents

	Overview

	Walk through

	1. Enter the PHP container

	2. Create new vhost directory

	3. Download Wordpress via git

	4. Symlink webroot

	5. DNS record

	6. Open your browser

Overview

The following configuration will be used:

	Project name

	VirtualHost directory

	Database

	TLD_SUFFIX

	Project URL

	my-wp

	/shared/httpd/my-wp

	my_wp

	loc

	http://my-wp.loc

Walk through

It will be ready in six simple steps:

	Enter the PHP container

	Create a new VirtualHost directory

	Download Wordpress via git

	Symlink webroot directory

	Setup DNS record

	Visit http://my-wp.loc in your browser

See also

Available tools

1. Enter the PHP container

host> ./shell.sh

See also

Work inside the container

2. Create new vhost directory

devilbox@php-7.0.20 in /shared/httpd $ mkdir my-wp

3. Download Wordpress via git

devilbox@php-7.0.20 in /shared/httpd $ cd my-wp
devilbox@php-7.0.20 in /shared/httpd/my-wp $ git clone https://github.com/WordPress/WordPress wordpress.git

4. Symlink webroot

devilbox@php-7.0.20 in /shared/httpd/my-wp $ ln -s wordpress.git/ htdocs

5. DNS record

If you do not have Auto-DNS configured, you will need to add the
following line to your host operating systems /etc/hosts file
(or C:\Windows\System32\drivers\etc on Windows):

/etc/hosts

 127.0.0.1 my-wp.loc

See also

For in-depth info about adding DNS records on Linux, Windows or MacOS see:
DNS records or Auto-DNS.

6. Open your browser

Open your browser at http://my-wp.loc

Setup Yii

This example will use composer to install Yii from within the PHP container.

See also

Official Yii Documentation [http://www.yiiframework.com/doc-2.0/guide-start-installation.html]

Table of Contents

	Overview

	Walk through

	1. Enter the PHP container

	2. Create new vhost directory

	3. Install Yii2 via composer

	4. Symlink webroot

	5. DNS record

	6. Open your browser

Overview

The following configuration will be used:

	Project name

	VirtualHost directory

	Database

	TLD_SUFFIX

	Project URL

	my-yii

	/shared/httpd/my-yii

	n.a.

	loc

	http://my-yii.loc

Walk through

It will be ready in six simple steps:

	Enter the PHP container

	Create a new VirtualHost directory

	Install Yii2 via composer

	Symlink webroot directory

	Setup DNS record

	Visit http://my-wp.loc in your browser

See also

Available tools

1. Enter the PHP container

host> ./shell.sh

See also

Work inside the container

2. Create new vhost directory

devilbox@php-7.0.20 in /shared/httpd $ mkdir my-yii

3. Install Yii2 via composer

devilbox@php-7.0.20 in /shared/httpd $ cd my-yii
devilbox@php-7.0.20 in /shared/httpd/my-yii $ composer create-project --prefer-dist --stability=dev yiisoft/yii2-app-basic yii2-dev

4. Symlink webroot

devilbox@php-7.0.20 in /shared/httpd/my-yii $ ln -s yii2-dev/web/ htdocs

5. DNS record

If you do not have Auto-DNS configured, you will need to add the
following line to your host operating systems /etc/hosts file
(or C:\Windows\System32\drivers\etc on Windows):

/etc/hosts

 127.0.0.1 my-yii.loc

See also

For in-depth info about adding DNS records on Linux, Windows or MacOS see:
DNS records or Auto-DNS.

6. Open your browser

Open your browser at http://my-yii.loc

Setup Zend

This example will use composer to install Zend from within the PHP container.

See also

Official Zend Documentation [https://docs.zendframework.com/tutorials/getting-started/skeleton-application/]

Table of Contents

	Overview

	Walk through

	1. Enter the PHP container

	2. Create new vhost directory

	3. Install Zend via composer

	4. Symlink webroot

	5. DNS record

	6. Open your browser

Overview

The following configuration will be used:

	Project name

	VirtualHost directory

	Database

	TLD_SUFFIX

	Project URL

	my-zend

	/shared/httpd/my-zend

	n.a.

	loc

	http://my-zend.loc

Walk through

It will be ready in six simple steps:

	Enter the PHP container

	Create a new VirtualHost directory

	Install Zend via composer

	Symlink webroot directory

	Setup DNS record

	Visit http://my-wp.loc in your browser

See also

Available tools

1. Enter the PHP container

host> ./shell.sh

See also

Work inside the container

2. Create new vhost directory

devilbox@php-7.0.20 in /shared/httpd $ mkdir my-zend

3. Install Zend via composer

devilbox@php-7.0.20 in /shared/httpd $ cd my-zend
devilbox@php-7.0.20 in /shared/httpd/my-zend $ composer create-project --prefer-dist zendframework/skeleton-application zend

4. Symlink webroot

devilbox@php-7.0.20 in /shared/httpd/my-zend $ ln -s zend/public/ htdocs

5. DNS record

If you do not have Auto-DNS configured, you will need to add the
following line to your host operating systems /etc/hosts file
(or C:\Windows\System32\drivers\etc on Windows):

/etc/hosts

 127.0.0.1 my-zend.loc

See also

For in-depth info about adding DNS records on Linux, Windows or MacOS see:
DNS records or Auto-DNS.

6. Open your browser

Open your browser at http://my-zend.loc

DNS records

Project DNS records are required, because each project is using its own virtual host with its own
unique server name.

The server name is constructed by a <project-directory> and the TLD_SUFFIX and
requires the same DNS record to be present in order to access it.

See also

This section gives you an overview about how to create separate DNS records for each project.
It has to be done for each project, however if you want to automate the process, refer
to Auto-DNS.

Table of Contents

	Examples

	Creating DNS records

	Native Docker

	Linux

	MacOS

	Windows

	Docker Toolbox

	MacOS

	Windows

	Verify

Examples

In order to better illustrate the process, we are going to use two projects as an example.
See the following table for project directories and TLD_SUFFIX.

	Project directory

	TLD_SUFFIX

	Project URL

	Required DNS name

	project-1

	loc

	http://project-1.loc

	project-1.loc

	www.project-1

	loc

	http://www.project-1.loc

	www.project-1.loc

Note

When you have created the above two projects, you can check the vhost page on the
Devilbox intranet. It will tell you exactly what DNS record to add.

[image: ../_images/devilbox-vhosts-dns.png]

Important

The IP address 127.0.0.1 is different for Docker Toolbox

Creating DNS records

When creating DNS records for your host operating system, there are two distinctions to be made.
If you use Native Docker (the default and recommended Docker), you can always use 127.0.0.1
as your IP address for the DNS record. If however your use Docker Toolbox, you first need to
find out the IP address of the Docker Toolbox virtual machine.

See also

Docker Toolbox

Native Docker

Linux

Use your favorite editor and open /etc/hosts with root privileges. The following example
uses vim to add the two example DNS records.

host> sudo vim /etc/hosts

127.0.0.1 project-1.loc
127.0.0.1 www.project-1.loc

MacOS

Use your favorite editor and open /etc/hosts with root privileges. The following example
uses vim to add the two example DNS records.

host> sudo vim /etc/hosts

127.0.0.1 project-1.loc
127.0.0.1 www.project-1.loc

Windows

On Windows you need to open C:\Windows\System32\drivers\etc with administrative privileges
and add the following two lines:

127.0.0.1 project-1.loc
127.0.0.1 www.project-1.loc

Docker Toolbox

When using Docker Toolbox the Devilbox runs inside a virtual machine and therefore the webserver
port (80) is not exposed to your host operating system. So your DNS record must point to the
virtual machine instead of your host system.

	Find out the IP address the virtual machine is running on

	Add a DNS entry to your host operating system for this IP address.

For the sake of this example, let’s assume the virtual machine is running on 192.16.0.1

MacOS

Use your favorite editor and open /etc/hosts with root privileges. The following example
uses vim to add the two example DNS records.

host> sudo vim /etc/hosts

192.16.0.1 project-1.loc
192.16.0.1 www.project-1.loc

Windows

On Windows you need to open C:\Windows\System32\drivers\etc with administrative privileges
and add the following two lines:

192.16.0.1 project-1.loc
192.16.0.1 www.project-1.loc

Verify

After settings the DNS records, you can use the ping command to verify if everything works.

host> ping -c1 project-1.loc

PING project-1.loc (127.0.0.1) 56(84) bytes of data.
64 bytes from localhost (127.0.0.1): icmp_seq=1 ttl=64 time=0.066 ms

host> ping -c1 www.project-1.loc

PING www.project-1.loc (127.0.0.1) 56(84) bytes of data.
64 bytes from localhost (127.0.0.1): icmp_seq=1 ttl=64 time=0.066 ms

Customized virtual host (vhost-gen)

Table of Contents

	vhost-gen

	What is vhost-gen

	Where do I find templates

	How does it work

	How to apply templates to a specific project

	1. Retrieve or set template directory value

	2. Copy webserver template to project template directory

	3. Adjust template

	4. Make Devilbox pick up those changes

	Templates explained

	Ensure yaml files are valid

	Template variables

	Global variables

	vHost type variable

	Feature variables

	Template structure

	1. vhost:

	2. vhost_type:

	3. features:

	Apply Changes

	Rename project directory

	Restart the Devilbox

	Further readings

vhost-gen

What is vhost-gen

vhost-gen is a python script which is able to dynamically generate Apache 2.2, Apache 2.4 and
Nginx virtual host or reverse proxy configuration files.

It is intended to be used by other means of automation such as change of directories or change of
listening ports.

See also

If you intend to use vhost-gen for your own projects, have a look at its projcet page and
its sister projects:

	vhost-gen [https://github.com/devilbox/vhost-gen]

	watcherd [https://github.com/devilbox/watcherd]

	watcherp [https://github.com/devilbox/watcherp]

Where do I find templates

The latest version of vhost-gen templates are shipped in the Devilbox git directory under
templates/vhost-gen. You can however also download them directly from its own git directory.

See also

https://github.com/devilbox/vhost-gen/tree/master/etc/templates.

How does it work

By default new virtual hosts are automatically generated and enabled by vhost-gen and watcherp
using the vanilla templates which are glued into the webserver Docker images. The used templates
are exactly the same as what you will find in templates/vhost-gen.

This ensures to have equal and sane default virtual host for all of your projects.
If you want to have a different virtual host configuration for a specific project of yours,
you can copy a corresponding template into your project directory and adjust it to your needs.

How to apply templates to a specific project

Customizing a virtual host via vhost-gen template is generally done in four steps:

	Retrieve or set template directory value in .env.

	Copy webserver template to project template directory

	Adjust template

	Make Devilbox pick up those changes

Let’s assume the following default values and one project named project-1:

	Variable

	Value

	Devilbox path

	/home/user/devilbox

	Templates to copy from

	/home/user/devilbox/templates/vhost-gen

	Project name

	project-1

	HTTPD_TEMPLATE_DIR

	.devilbox (default value)

	HOST_PATH_HTTPD_DATADIR

	./data/www (default value)

Those assumed settings will result in the following directory paths which must be created by you:

	What

	Path

	Project directory path

	/home/user/devilbox/data/www/project-1/

	Project template path

	/home/user/devilbox/data/www/project-1/.devilbox/

1. Retrieve or set template directory value

By default the HTTPD_TEMPLATE_DIR value is .devilbox. This is defined in the
.env file. Feel free to change it to whatever directory name you prefer, but keep in mind that
it will change the Project template path which you need to create yourself.

For this example we will keep the default value for the sake of simplicity: .devilxbox.

Note

The HTTPD_TEMPLATE_DIR value is a global setting and will affect all projects.

2. Copy webserver template to project template directory

First you need to ensure that the HTTPD_TEMPLATE_DIR exists wihin you project.

Navigate to the Devilbox directory
host> cd /home/user/devilbox

Create template directory in your project
host> mkdir ./data/www/project-1/.devilbox

Then you can copy the templates.

host> cp templates/vhost-gen/* ./data/www/project-1/.devilbox

Note

You actually only need to copy the template of your chosen webserver (either Apache 2.2,
Apache 2.4 or Nginx), however it is good practice to copy all templates and also adjust
all templates synchronously. This allows you to change web server versions and still
keep your virtual host settings.

3. Adjust template

At this stage you can start adjusting the template. Either do that for the webserver version you
have enabled via HTTPD_SERVER:
/home/user/devilbox/data/www/project-1/.devilbox/apache22.yml.
/home/user/devilbox/data/www/project-1/.devilbox/apache24.yml,
/home/user/devilbox/data/www/project-1/.devilbox/nginx.yml or do it for all of them
synchronously.

Note

What exactly to change will be explained later.

4. Make Devilbox pick up those changes

Whenever you change a project vhost template or the HTTPD_TEMPLATE_DIR value,
you need to restart the Devilbox.

Note

It is also possible to do it without a restart which will be explained later.

Templates explained

Before the templates are explained, have a look at the following table to find out what template
needs to be in place for what webserver version.

	Webserver

	Template

	Apache 2.2

	apache22.yml

	Apache 2.4

	apache22.yml

	Nginx stable

	nginx.yml

	Nginx mainline

	nginx.yml

Note

Nginx stable and mainline share the same template as their syntax has no special
differences, whereas Apache 2.2 and Apache 2.4 have slight differences in syntax and therefore
require two different templates.

Ensure yaml files are valid

Warning

Pay close attention that you do not use TAB (\t) characters for indenting the vhost-gen
yaml files. Some editors might automatically indent using TABs, so ensure they are replaced
with spaces. If TAB characters are present, those files become invalid and won’t work.
https://github.com/cytopia/devilbox/issues/142

You can use the bundled yamllint binary inside the container to validate your config.

 # Navigate to the Devilbox directory
 host> cd /home/user/devilbox

 # Enter the PHP container
 host> ./shell.sh

 # Go to your project's template directory
 devilbox@php-7.0.19 in /shared/httpd $ cd project-1/.devilbox

 # Check the syntax of apache22.yml
 devilbox@php-7.0.19 in /shared/httpd/project-1/.devilbox $ yamllint apache22.yml

 108:81 error line too long (90 > 80 characters) (line-length)
 139:81 error line too long (100 > 80 characters) (line-length)
 140:81 error line too long (84 > 80 characters) (line-length)
 142:81 error line too long (137 > 80 characters) (line-length)

Long line errors can safely be ignored.

Template variables

Every uppercase string which begins with __ and ends by __ (such as __PORT__) is a
variable that will be replaced by a value. Variables can contain a string, a multi-line string or
can also be replaced to an empty value.

Global variables

There are global variables that are determined by the command line arguments of vhost-gen
itself or are elsewhere replaced by the Devilbox webserver container such as:

	__PORT__

	__DEFAULT_VHOST__

	__VHOST_NAME__

	__ACCESS_LOG__

	__ERROR_LOG__

vHost type variable

There are also two variables that will be replaced according to the type of the vhost - either
a normal vhost or a reverse proxy vhost.

	__VHOST_DOCROOT__

	__VHOST_PROXY__

The Devilbox always uses a normal vhost by default, so the __VHOST_DOCROOT__ variable will be
replaced by what the vhost_type.docroot section provides.
The vhost_type.rproxy will be ignored and __VHOST_PROXY__ will be replaced by an empty
string.

Feature variables

All other variables will be replaced by what is provided in the features: section.
All subsections of features: have corresponding variables in the following form:

	Feature directive

	Variable name pattern

	lower_case:

	__UPPER_CASE__

As an example, the contents of the features.php_fpm: section will be replaced into the
__PHP_FPM__ variable.

Template structure

Each vhost-gen template has three main yaml directives:

	vhost:

	vhost_type:

	features:

1. vhost:

The vhost: directive will contain the final resulting virtual host configuration that will
be applied by the webserver. Each of its containing variables will be substituted and its content
will be copied to a webserver configuration file.

By default the vhost: section has variables from global scope, from the vhost_type:
section and from the features: section.

You can also fully hard-code your webserver configuration without any variables. This way you
can specify a fully self-brewed webserver configuration. An example for Apache 2.2 could
look like this:

vhost: |
 <VirtualHost *:80>
 ServerName example.com

 CustomLog "/var/log/apache/access.log" combined
 ErrorLog "/var/log/apache/error.log"

 DocumentRoot "/shared/httpd/project-1/htdocs"
 <Directory "/shared/httpd/project-1/htdocs">
 DirectoryIndex index.php

 AllowOverride All
 Options All

 RewriteEngine on
 RewriteBase /

 Order allow,deny
 Allow from all
 </Directory>

 ProxyPassMatch ^/(.*\.php(/.*)?)$ fcgi://127.0.0.1:9000/shared/httpd/project-1/htdocs/$1
 </VirtualHost>

2. vhost_type:

The vhost_type: contains docroot and rproxy. The Devilbox only makes use of docroot
which holds the definition of a normal vhost. Its content will be replaced into the
__VHOST_DOCROOT__ variable.

The rproxy section will be ignored and the __VHOST_RPROXY__ variable will contain an empty
value.

	vHost Type section

	Variable to be replaced into

	docroot:

	__VHOST_DOCROOT__

	rproxy:

	__VHOST_RPROXY__ (empty)

3. features:

This section contains directives that will all be replaced into vhost: variables.

	Feature section

	Variable to be replaced into

	php_fpm:

	__PHP_FPM__

	alias:

	__ALIASES__

	deny:

	__DENIES__

	server_status:

	__SERVER_STATUS__

	xdomain_request:

	__XDOMAIN_REQ__

Apply Changes

After having edited your vhost-gen template files, you still need to apply these changes.
This can be achieved in two ways:

	Rename your project directory back and forth

	Restart the Devilbox

Rename project directory

Navigate to the data directory
host> /home/user/devilbox/data/www

Rename your project to something else
host> mv project-1 project-1.tmp

Rename your project to its original name
host> mv project-1.tmp project-1

If you want to understand what is going on right now, check the docker logs for the web server.

Navigate to the devilbox directory
host> /home/user/devilbox

Check docker logs
host> docker-compose logs httpd

httpd_1 | vhostgen: [2018-03-18 11:46:52] Adding: project-1.tmp.loc
httpd_1 | watcherd: [2018-03-18 11:46:52] [OK] ADD: succeeded: /shared/httpd/project-1.tmp
httpd_1 | watcherd: [2018-03-18 11:46:52] [OK] DEL: succeeded: /shared/httpd/project-1
httpd_1 | watcherd: [2018-03-18 11:46:52] [OK] TRIGGER succeeded: /usr/local/apache2/bin/httpd -k restart

httpd_1 | vhostgen: [2018-03-18 11:46:52] Adding: project-1loc
httpd_1 | watcherd: [2018-03-18 11:46:52] [OK] ADD: succeeded: /shared/httpd/project-1
httpd_1 | watcherd: [2018-03-18 11:46:52] [OK] DEL: succeeded: /shared/httpd/project-1.tmp
httpd_1 | watcherd: [2018-03-18 11:46:52] [OK] TRIGGER succeeded: /usr/local/apache2/bin/httpd -k restart

What happened?

The directory changes have been noticed and a new virtual host has been created. This time however
your new vhost-gen template has been read and the changes have applied.

Note

Renaming a project directory will only affect a single project. In case your change the
value of HTTPD_TEMPLATE_DIR it will affect all projects and you would have to
rename all project directories. In this case it is much faster to just restart the Devilbox.

Restart the Devilbox

Stop the Devilbox and start it up again.

Further readings

See also

Have a look at the following examples which involve customizing vhost-gen templates:

	Adding Sub domains

HTTPS (SSL)

This page shows you how to use the Devilbox on https and how to import the Certificate Authority
into your browser once, so that you always and automatically get valid SSL certificates for all new
projects.

SSL certificates are generated automatically and there is nothing to do from your side.

[image: ../_images/https-ssl-address-bar.png]
Table of Contents

	TL;DR

	How does it work

	Certificate Authority

	SSL Certificates

	Import the CA into your browser

	Chrome / Chromium

	Firefox

	Further Reading

TL;DR

Import the Certificate Authority into your browser and you are all set.

How does it work

Certificate Authority

When the Devilbox starts up for the first time, it will generate a
Certificate Authority [https://en.wikipedia.org/wiki/Certificate_authority] and will store its
public and private key in ./ca/ within the Devilbox git directory.

The keys are only generated if they don’t exist and kept permanently if you don’t delete them
manually, i.e. they are not overwritten.

host> cd path/to/devilbox
host> ls -l ca/
-rw-r--r-- 1 cytopia cytopia 1558 May 2 11:12 devilbox-ca.crt
-rw------- 1 cytopia cytopia 1675 May 2 11:12 devilbox-ca.key
-rw-r--r-- 1 cytopia cytopia 17 May 4 08:35 devilbox-ca.srl

SSL Certificates

Whenever you create a new project directory, multiple things happen in the background:

	A new virtual host is created

	DNS is provided via Auto-DNS

	A new SSL certificate is generated for that vhost

	The SSL certificate is signed by the Devilbox Certificate Authority

By having a SSL certificates signed by the provided CA, you will only have to import the CA
into your browser ones and all current projects and future projects will automatically have
valid and trusted SSL certificates without any further work.

Important

Importing the CA into the browser is also recommended and required for the Devilbox
intranet page to work properly.

Import the CA into your browser

Chrome / Chromium

Open Chrome settings, scroll down to the very bottom and click on Advanced to expand the
advanced settings.

[image: ../_images/https-ssl-01-chrome-settings.png]
Find the setting Manage certificates and open it.

[image: ../_images/https-ssl-02-chrome-advanced-settings.png]
Navigate to the tab setting AUTHORITIES and click on IMPORT.

[image: ../_images/https-ssl-03-chrome-authorities.png]
Select devilbox-ca.crt from within the Devilbox ./ca directory:

[image: ../_images/https-ssl-04-import.png]
As the last step you are asked what permissions you want to grant the newly importat CA.
To make sure it works everywhere, check all options and proceed with OK.

[image: ../_images/https-ssl-05-chrome-set-trust.png]
Now you are all set and all generated SSL certificates will be valid from now on.

[image: ../_images/https-ssl-address-bar.png]

Firefox

Open Firefox settings and click on Privacy & Security.

[image: ../_images/https-ssl-01-firefox-settings.png]
At the very bottom click on the button View Certificates.

[image: ../_images/https-ssl-02-firefox-security-settings.png]
In the Authories tab, click on Import.

[image: ../_images/https-ssl-03-firefox-authorities.png]
Select devilbox-ca.crt from within the Devilbox ./ca directory:

[image: ../_images/https-ssl-04-import.png]
As the last step you are asked what permissions you want to grant the newly importat CA.
To make sure it works everywhere, check all options and proceed with OK.

[image: ../_images/https-ssl-05-firefox-set-trust.png]
Now you are all set and all generated SSL certificates will be valid from now on.

[image: ../_images/https-ssl-address-bar.png]

Further Reading

See also

.env variable: DEVILBOX_UI_SSL_CN

Web server

This page lists a general overview about the bundled web server - its features,
where it comes from, how it is built and what configuration is possible.

Table of Contents

	Features

	Auto-virtual hosts

	File permission problem

	Custom global configuration

	Custom vhost configuration

	Information

	Dockerfile

	Github

	Dockerhub

	Build process

	Configuration

	.env file

	apache.conf / nginx.conf

	vhost-gen

Features

Auto-virtual hosts

File permission problem

Custom global configuration

Custom vhost configuration

Information

Dockerfile

Github

Dockerhub

Build process

Configuration

.env file

apache.conf / nginx.conf

vhost-gen

PHP

Environment variables

MySQL

MongoDB

Redis

Memcached

BIND

Devilbox Intranet

Auto-DNS

If you don’t want to add DNS records manually for every project, you can also use the bundled
DNS server and use it’s DNS catch-all feature to have all DNS records automatically available.

Important

By default, the DNS server is set to listen on 1053 to avoid port collisions during startup.
You need to change it to 53 in .env via HOST_PORT_BIND.

Table of Contents

	Native Docker

	Prerequisites

	Linux

	MacOS

	Windows

	Docker Toolbox

	MacOS

	Windows

Native Docker

The webserver as well as the DNS server must be available on 127.0.0.1 or on all interfaces
on 0.0.0.0. Additionally the DNS server port must be set to 53 (it is not by default).

	Ensure LOCAL_LISTEN_ADDR is set accordingly

	Ensure HOST_PORT_BIND is set accordingly

	No other DNS resolver should listen on 127.0.0.1:53

Prerequisites

First ensure that LOCAL_LISTEN_ADDR is either empty or listening on 127.0.0.1.

.env

host> cd path/to/devilbox
host> vi .env
LOCAL_LISTEN_ADDR=

Then you need to ensure that HOST_PORT_BIND is set to 53.

.env

host> cd path/to/devilbox
host> vi .env
HOST_PORT_BIND=53

Before starting up the Devilbox, ensure that port 53 is not already used on 127.0.0.1.

host> netstat -an | grep -E 'LISTEN\s*$'
tcp 0 0 127.0.0.1:53 0.0.0.0:* LISTEN
tcp 0 0 127.0.0.1:43477 0.0.0.0:* LISTEN
tcp 0 0 127.0.0.1:50267 0.0.0.0:* LISTEN

If you see port 53 already being used as in the above example, ensure to stop any
DNS resolver, otherwise it does not work.

The output should look like this (It is only important that there is no :53.

host> netstat -an | grep -E 'LISTEN\s*$'
tcp 0 0 127.0.0.1:43477 0.0.0.0:* LISTEN
tcp 0 0 127.0.0.1:50267 0.0.0.0:* LISTEN

Linux

If the prerequisites are met, you can edit /etc/dhcp/dhclient.conf with root or sudo privileges
and add an instruction, which tells your local DHCP client that whenever any of your DNS servers
are changed, you always want to have an additional entry, which is the one from the Devilbox.

Add the following line to to the very beginning to /etc/dhcp/dhclient.conf:

/etc/dhcp/dhclient.conf

prepend domain-name-servers 127.0.0.1;

When you do that for the first time, you need to restart the network-manager service.

Via service command
$ sudo service network-manager restart

Or the systemd way
$ sudo systemctl restart network-manager

This will make sure that whenever your /etc/resolv.conf is deployed, you will have 127.0.0.1
as the first entry and also make use of any other DNS server which are deployed via the LAN’s DHCP server.

If the Devilbox DNS server is not running, it does not affect the name resolution, because you will
still have other entries in /etc/resolv.conf.

MacOS

Modifying /etc/resolv.conf does not work on MacOS, you need to make changes in your
System Preferences:

	Open System Preferences

	Go to Network

	Select your connected interface

	Click on DNS tab

	Add new DNS server by clicking the + sign

	Add 127.0.0.1

[image: ../_images/auto-dns-macos-dns.png]

Windows

On Windows, you need to change your active network adapter. See the following screenshots
for how to do it.

[image: ../_images/auto-dns-windows-dns-01.jpg]
[image: ../_images/auto-dns-windows-dns-02.jpg]
[image: ../_images/auto-dns-windows-dns-03.jpg]
In the last screenshot, you will have to add 127.0.0.1 as your Preferred DNS server.

Docker Toolbox

See also

Docker Toolbox

MacOS

	LOCAL_LISTEN_ADDR must be empty in order to listen on all interfaces

	HOST_PORT_BIND must be set to 53

	Port 80 from the Docker Toolbox virtual machine must be port-forwarded to 127.0.0.1:80 on your host os

	Port 53 from the Docker Toolbox virtual machine must be port-forwarded to 127.0.0.1:53 on your host os

Todo

This section needs further proof and information.

Windows

	LOCAL_LISTEN_ADDR must be empty in order to listen on all interfaces

	HOST_PORT_BIND must be set to 53

	Port 80 from the Docker Toolbox virtual machine must be port-forwarded to 127.0.0.1:80 on your host os

	Port 53 from the Docker Toolbox virtual machine must be port-forwarded to 127.0.0.1:53 on your host os

Todo

This section needs further proof and information.

.env file

All docker-compose configuration is done inside the .env file which simply defines key-value
variables parsed to docker-compose.yml.

Note

what is the .env [https://docs.docker.com/compose/env-file/] file?

Note

Use your browsers search function to quickly find the desired variable name.

Important

Any change of .env requires a restart of the Devilbox.

Table of Contents

	Core settings

	DEBUG_COMPOSE_ENTRYPOINT

	DOCKER_LOGS

	DEVILBOX_PATH

	LOCAL_LISTEN_ADDR

	TLD_SUFFIX

	EXTRA_HOSTS

	NEW_UID

	NEW_GID

	TIMEZONE

	Intranet settings

	DNS_CHECK_TIMEOUT

	DEVILBOX_UI_SSL_CN

	DEVILBOX_UI_PROTECT

	DEVILBOX_UI_PASSWORD

	DEVILBOX_UI_ENABLE

	Docker image versions

	PHP_SERVER

	HTTPD_SERVER

	MYSQL_SERVER

	PGSQL_SERVER

	REDIS_SERVER

	MEMCD_SERVER

	MONGO_SERVER

	Docker host mounts

	HOST_PATH_HTTPD_DATADIR

	Example

	Mapping

	HOST_PATH_MYSQL_DATADIR

	HOST_PATH_PGSQL_DATADIR

	HOST_PATH_MONGO_DATADIR

	Docker host ports

	HOST_PORT_HTTPD

	HOST_PORT_HTTPD_SSL

	HOST_PORT_MYSQL

	HOST_PORT_PGSQL

	HOST_PORT_REDIS

	HOST_PORT_MEMCD

	HOST_PORT_MONGO

	HOST_PORT_BIND

	Container settings

	PHP

	Custom variables

	Web server

	HTTPD_DOCROOT_DIR

	HTTPD_TEMPLATE_DIR

	MySQL

	MYSQL_ROOT_PASSWORD

	MYSQL_GENERAL_LOG

	PostgreSQL

	PGSQL_ROOT_USER

	PGSQL_ROOT_PASSWORD

	Bind

	BIND_DNS_RESOLVER

	BIND_DNSSEC_VALIDATE

	BIND_LOG_DNS

	BIND_TTL_TIME

	BIND_REFRESH_TIME

	BIND_RETRY_TIME

	BIND_EXPIRY_TIME

	BIND_MAX_CACHE_TIME

Core settings

DEBUG_COMPOSE_ENTRYPOINT

This variable controls the docker-compose log verbosity during service startup.
When set to 1 verbose output as well as executed commands are shown.
When set to 0 only warnings and errors are shown.

	Name

	Allowed values

	Default value

	DEBUG_COMPOSE_ENTRYPOINT

	0 or 1

	1

DOCKER_LOGS

This variable controls the output of logs. Logs can either go to file and will be available
under ./log/ inside the Devilbox git directory or they can be forwarded to Docker logs
and will then be send to stdout and stderr.

	Name

	Allowed values

	Default value

	DOCKER_LOGS

	1 or 0

	0

When DOCKER_LOGS is set to 1, output will go to Docker logs, otherwise if it is set to
0 the log output will go to files under ./log/.

The ./log/ directory itself will contain subdirectories in the form <service>-<version>
which will then hold all available log files.

Note

Log directories do not exist until you start the Devilbox and will only be created for
the service versions you have enabled in .env.

The log directory structure would look something like this:

host> cd path/to/devilbox
host> tree log

log/
├── nginx-stable/
│ ├── nginx-stable/
│ ├── defaultlocalhost-access.log
│ ├── defaultlocalhost-error.log
│ ├── <project-name>-access.log # Each project has its own access log
│ ├── <project-name>-error.log # Each project has its own error log
├── mariadb-10.1/
│ ├── error.log
│ ├── query.log
│ ├── slow.log
├── php-fpm-7.1/
│ ├── php-fpm.access
│ ├── php-fpm.error

When you want to read logs sent to Docker logs, you can do so via the following command:

host> cd path/to/devilbox
host> docker-compose logs

When you want to continuously watch the log output (such as tail -f), you need to append -f
to the command.

host> cd path/to/devilbox
host> docker-compose logs -f

When you only want to have logs displayed for a single service, you can also append the service
name (works with or without -f as well):

host> cd path/to/devilbox
host> docker-compose logs php -f

Important

Currently this is only implemented for PHP-FPM and HTTPD Docker container.
MySQL will always output its logs to file and all other official Docker container
always output to Docker logs.

DEVILBOX_PATH

This specifies a relative or absolute path to the Devilbox git directory and will be used as a
prefix for all Docker mount paths.

	Relative path: relative to the devilbox git directory (Must start with .)

	Absolute path: Full path (Must start with /)

The only reason you would ever want change this variable is when you are on MacOS and relocate
your project files onto an NFS volume due to performance issues.

Warning

	Remove stopped container

	Whenever you change this value you have to stop the Devilbox and also remove the stopped
container via
docker-compose rm.

	Name

	Allowed values

	Default value

	DEVILBOX_PATH

	valid path

	.

LOCAL_LISTEN_ADDR

This variable specifies you host computers listening IP address for exposed container ports.
If you leave this variable empty, all exposed ports will be bound to all network interfaces on
your host operating system, which is also the default behaviour.
If you only want the exposed container ports to be bound to a specific IP address (such as
127.0.0.1), you can add this IP address here, but note, in this case you must add a trailing
colon (:).

	Name

	Allowed values

	Default value

	LOCAL_LISTEN_ADDR

	IP address

	empty

Examples:

	Value

	Meaning

	127.0.0.1:

	only expose ports on your host os on 127.0.0.1. Note the trailing :

	192.168.0.1:

	only expose ports on your host os on 192.168.0.1. Note the trailing :

	0.0.0.0:

	listen on all host computer interfaces / IP addresses

	
	listen on all host computer interfaces / IP addresses

Note

When using Docker Toolbox, you must leave this variable empty, in order to have the exposed
ports available on the external interface of the virtual machine.

TLD_SUFFIX

This variable controls all of your projects domain suffix.

	Name

	Allowed values

	Default value

	TLD_SUFFIX

	alpha-num string

	loc

Your project domains are built together out of the project directory name and the TLD_SUFFIX.
The formula is like this: http://<project-dir>.<TLD_SUFFIX>.

You can even use official tld’s and have your nameserver point to an internal LAN id, to make
this project visible to everyone in your corporate LAN.

How does it look?

	Project dir

	TLD_SUFFIX

	Project URL

	my-test

	loc

	http://my-test.loc

	example

	loc

	http://example.loc

	www.test

	loc

	http://www.test.loc

	my-test

	local

	http://my-test.local

	example

	local

	http://example.local

	www.test

	local

	http://www.test.local

	my-test

	net

	http://my-test.net

	example

	com

	http://example.com

	www.test

	org

	http://www.test.org

Warning

Do not use dev as a domain suffix (I know, it’s tempting).
It has been registered by
Google [https://icannwiki.org/.dev] and they advertise the
HSTS header [https://en.wikipedia.org/wiki/HTTP_Strict_Transport_Security]
which makes your browser redirect every http request to https.

See also: This blog post [https://ma.ttias.be/chrome-force-dev-domains-https-via-preloaded-hsts]

Warning

Do not use localhost as a domain suffix.
There is an RFC draft to make sure all localhost requests, including their sub domains
should be redirected to the systems loopback interface.
Docker has already released a commit preventing the use of localhost on MacOS.

See also: RFC Draft [https://tools.ietf.org/html/draft-west-let-localhost-be-localhost-06]
and
Docker Release notes [https://docs.docker.com/docker-for-mac/release-notes/#docker-community-edition-17120-ce-mac46-2018-01-09]

EXTRA_HOSTS

This variable allows you to add additional DNS entries from hosts outside the Devilbox network,
such as hosts running on your host operating system, the LAN or from the internet.

	Name

	Allowed values

	Default value

	EXTRA_HOSTS

	comma separated host mapping

	empty

Adding hosts can be done in two ways:

	Add DNS entry for an IP address

	Add DNS entry for a hostname/CNAME which will be mapped to whatever IP address it will resolve

The general structure to add extra hosts looks like this

Single host
EXTRA_HOSTS='hostname=1.1.1.1'
EXTRA_HOSTS='hostname=CNAME'

Multiple hosts
EXTRA_HOSTS='hostname1=1.1.1.1,hostname2=2.2.2.2'
EXTRA_HOSTS='hostname1=CNAME1,hostname2=CNAME2'

	The left side represents the name by which the host will be available by

	The right side represents the IP address by which the new name will resolve to

	If the right side is a CNAME itself, it will be first resolved to an IP address and then the left side will resolve to that IP address.

A few examples for adding extra hosts:

1. One entry:
The following extra host 'loc' is added and will always point to 192.168.0.7.
When reverse resolving '192.168.0.7' it will answer with 'tld'.
EXTRA_HOSTS='loc=192.168.0.7'

2. One entry:
The following extra host 'my.host.loc' is added and will always point to 192.168.0.9.
When reverse resolving '192.168.0.9' it will answer with 'my.host'.
EXTRA_HOSTS='my.host.loc=192.168.0.9'

3. Two entries:
The following extra host 'tld' is added and will always point to 192.168.0.1.
When reverse resolving '192.168.0.1' it will answer with 'tld'.
A second extra host 'example.org' is added and always redirects to 192.168.0.2
When reverse resolving '192.168.0.2' it will answer with 'example.org'.
EXTRA_HOSTS='tld=192.168.0.1,example.org=192.168.0.2'

4. Using CNAME's for resolving:
The following extra host 'my.host' is added and will always point to whatever
IP example.org resolves to.
When reverse resolving '192.168.0.1' it will answer with 'my.host'.
EXTRA_HOSTS='my.host=example.org'

See also

This resembles the feature of Docker Compose: extra_hosts [https://docs.docker.com/compose/compose-file/#external_links] to add external links.

See also

Communicating with external hosts

NEW_UID

This setting controls one of the core concepts of the Devilbox. It overcomes the problem of
syncronizing file and directory permissions between the Docker container and your host operating
system.

You should set this value to the user id of your host operating systems user you actually work with.
How do you find out your user id?

host> id -u
1000

In most cases (on Linux and MacOS), this will be 1000 if you are the first and only user on
your system, however it could also be a different value.

	Name

	Allowed values

	Default value

	NEW_UID

	valid uid

	1000

The Devilbox own containers will then pick up this value during startup and change their internal
user id to the one specified. Services like PHP-FPM, Apache and Nginx will then do read and write
operation of files with this uid, so all files mounted will have permissions as your local user
and you do not have to fix permissions afterwards.

See also

	Syncronize container permissions

	Read up more on the general problem of trying to have syncronized permissions between
the host system and a running Docker container.

NEW_GID

This is the equivalent to user id for groups and addresses the same concept. See NEW_UID.

How do you find out your group id?

host> id -g
1000

In most cases (on Linux and MacOS), this will be 1000 if you are the first and only user on
your system, however it could also be a different value.

	Name

	Allowed values

	Default value

	NEW_GID

	valid gid

	1000

See also

	Syncronize container permissions

	Read up more on the general problem of trying to have syncronized permissions between
the host system and a running Docker container.

TIMEZONE

This variable controls the system as well as service timezone for the Devilbox’s own containers.
This is especially useful to keep PHP and database timezones in sync.

	Name

	Allowed values

	Default value

	TIMEZONE

	valid timezone

	Europe/Berlin

Have a look at Wikipedia to get a list of valid timezones: https://en.wikipedia.org/wiki/List_of_tz_database_time_zones

Note

It is always a good practice not to assume a specific timezone anyway and store all values
in UTC (such as time types in MySQL).

Intranet settings

DNS_CHECK_TIMEOUT

The Devilbox intranet validates if every project has a corresponding DNS record (either an official
DNS record, one that came from its own Auto-DNS or an /etc/hosts entry). By doing so it queries
the DNS record based on <project-dir>.<TLD_SUFFIX>. In case it does not exist, the query itself
might take a while and the intranet page will be unresponsive during that time. In order to avoid
long waiting times, you can set the DNS query time-out in seconds after which the query should stop
and report as unsuccessful. The default is 1 second, wich should be fairly sane for all use-cases.

	Name

	Allowed values

	Default value

	DNS_CHECK_TIMEOUT

	integers

	1

DEVILBOX_UI_SSL_CN

When accessing the Devilbox intranet via https it will use an automatically created SSL certificate.
Each SSL certificate requires a valid Common Name, which must match the virtual host name.

This setting let’s you specify by what name you are accessing the Devilbox intranet.
The default is localhost, but if you have created your own alias, you must change this value
accordingly. Also note that multiple values are possible and must be separated with a comma.
When you add an asterisk (*.) to the beginning, it means it will create a wildcard certificate for that
hostname.

	Name

	Allowed values

	Default value

	DEVILBOX_UI_SSL_CN

	comma separated list of CN’s

	localhost,*.localhost,devilbox,*.devilbox

Examples:

	DEVILBOX_UI_SSL_CN=localhost

	DEVILBOX_UI_SSL_CN=localhost,*.localhost

	DEVILBOX_UI_SSL_CN=localhost,*.localhost,devilbox,*.devilbox

	DEVILBOX_UI_SSL_CN=intranet.example.com

See also

HTTPS (SSL)

DEVILBOX_UI_PROTECT

By setting this variable to 1, the Devilbox intranet will be password protected.
This might be useful, if you share your running Devilbox instance accross a LAN, but do not want
everybody to have access to the intranet itself, just to the projects you actually provide.

	Name

	Allowed values

	Default value

	DEVILBOX_UI_PROTECT

	0 or 1

	0

Note

Also pay attention to the next env var, which will control the password for the login:
DEVILBOX_UI_PASSWORD.

DEVILBOX_UI_PASSWORD

When the devilbox intranet is password-protected via DEVILBOX_UI_PROTECT, this is the actual
password by which it will be protected.

	Name

	Allowed values

	Default value

	DEVILBOX_UI_PASSWORD

	any string

	password

DEVILBOX_UI_ENABLE

In case you want to completely disable the Devilbox intranet, such as when running it on production,
you need to set this variable to 0.

By disabling the intranet, the webserver will simply remove the default virtual host and redirect
all IP-based requests to the first available virtual host, which will be you first project when
ordering their names alphabetically.

	Name

	Allowed values

	Default value

	DEVILBOX_UI_ENABLE

	0 or 1

	1

Docker image versions

The following settings reflect one of the main goals of the Devilbox: being able to run any
combination of all container versions.

Note

Any change for those settings requires a restart of the devilbox.

PHP_SERVER

This variable choses your desired PHP-FPM version to be started.

	Name

	Allowed values

	Default value

	PHP_SERVER

	php-fpm-5.4
 php-fpm-5.5
 php-fpm-5.6
 php-fpm-7.0
 php-fpm-7.1
 php-fpm-7.2

	php-fpm-7.1

All values are already available in the .env file and just need to be commented or uncommented. If multiple values are uncommented, the last uncommented variable one takes precedences:

.env

host> grep PHP_SERVER .env

#PHP_SERVER=php-fpm-5.4
#PHP_SERVER=php-fpm-5.5
#PHP_SERVER=php-fpm-5.6
#PHP_SERVER=php-fpm-7.0
PHP_SERVER=php-fpm-7.1
#PHP_SERVER=php-fpm-7.2
#PHP_SERVER=php-fpm-7.3
#PHP_SERVER=hhvm-latest

HTTPD_SERVER

This variable choses your desired web server version to be started.

	Name

	Allowed values

	Default value

	HTTPD_SERVER

	apache-2.2
 apache-2.4
 nginx-stable
 nginx-mainline

	nginx-stable

All values are already available in the .env file and just need to be commented or uncommented. If multiple values are uncommented, the last uncommented variable one takes precedences:

.env

host> grep HTTPD_SERVER .env

#HTTPD_SERVER=apache-2.2
#HTTPD_SERVER=apache-2.4
HTTPD_SERVER=nginx-stable
#HTTPD_SERVER=nginx-mainline

MYSQL_SERVER

This variable choses your desired MySQL server version to be started.

	Name

	Allowed values

	Default value

	MYSQL_SERVER

	mysql-5.5
 mysql-5.6
 mariadb-10.2
 percona-5.7
 and many more

	mariadb-10.1

All values are already available in the .env file and just need to be commented or uncommented. If multiple values are uncommented, the last uncommented variable one takes precedences:

.env

host> grep MYSQL_SERVER .env

#MYSQL_SERVER=mysql-5.5
#MYSQL_SERVER=mysql-5.6
#MYSQL_SERVER=mysql-5.7
#MYSQL_SERVER=mysql-8.0
#MYSQL_SERVER=mariadb-5.5
#MYSQL_SERVER=mariadb-10.0
MYSQL_SERVER=mariadb-10.1
#MYSQL_SERVER=mariadb-10.2
#MYSQL_SERVER=mariadb-10.3
#MYSQL_SERVER=percona-5.5
#MYSQL_SERVER=percona-5.6
#MYSQL_SERVER=percona-5.7

PGSQL_SERVER

This variable choses your desired PostgreSQL server version to be started.

	Name

	Allowed values

	Default value

	PGSQL_SERVER

	9.1
 9.2
 9.3
 9.4
 and many more

	9.6

All values are already available in the .env file and just need to be commented or uncommented. If multiple values are uncommented, the last uncommented variable one takes precedences:

.env

host> grep PGSQL_SERVER .env

#PGSQL_SERVER=9.1
#PGSQL_SERVER=9.2
#PGSQL_SERVER=9.3
#PGSQL_SERVER=9.4
#PGSQL_SERVER=9.5
PGSQL_SERVER=9.6
#PGSQL_SERVER=10.0

Note

This is the official PostgreSQL server which might already have other tags available,
check their official website for even more versions.
https://hub.docker.com/_/postgres/

REDIS_SERVER

This variable choses your desired Redis server version to be started.

	Name

	Allowed values

	Default value

	REDIS_SERVER

	2.8
 3.0
 3.2
 4.0
 and many more

	4.0

All values are already available in the .env file and just need to be commented or uncommented. If multiple values are uncommented, the last uncommented variable one takes precedences:

.env

host> grep REDIS_SERVER .env

#REDIS_SERVER=2.8
#REDIS_SERVER=3.0
#REDIS_SERVER=3.2
REDIS_SERVER=4.0

Note

This is the official Redis server which might already have other tags available,
check their official website for even more versions.
https://hub.docker.com/_/redis/

MEMCD_SERVER

This variable choses your desired Memcached server version to be started.

	Name

	Allowed values

	Default value

	MEMCD_SERVER

	1.4.21
 1.4.22
 1.4.23
 1.4.24
 and many more

	1.5.2

All values are already available in the .env file and just need to be commented or uncommented. If multiple values are uncommented, the last uncommented variable one takes precedences:

.env

host> grep MEMCD_SERVER .env

#MEMCD_SERVER=1.4.21
#MEMCD_SERVER=1.4.22
#MEMCD_SERVER=1.4.23
#MEMCD_SERVER=1.4.24
#MEMCD_SERVER=1.4.25
#MEMCD_SERVER=1.4.26
#MEMCD_SERVER=1.4.27
#MEMCD_SERVER=1.4.28
#MEMCD_SERVER=1.4.29
#MEMCD_SERVER=1.4.30
#MEMCD_SERVER=1.4.31
#MEMCD_SERVER=1.4.32
#MEMCD_SERVER=1.4.33
#MEMCD_SERVER=1.4.34
#MEMCD_SERVER=1.4.35
#MEMCD_SERVER=1.4.36
#MEMCD_SERVER=1.4.37
#MEMCD_SERVER=1.4.38
#MEMCD_SERVER=1.4.39
#MEMCD_SERVER=1.5.0
#MEMCD_SERVER=1.5.1
MEMCD_SERVER=1.5.2
#MEMCD_SERVER=latest

Note

This is the official Memcached server which might already have other tags available,
check their official website for even more versions.
https://hub.docker.com/_/memcached/

MONGO_SERVER

This variable choses your desired MongoDB server version to be started.

	Name

	Allowed values

	Default value

	MONGO_SERVER

	2.8
 3.0
 3.2
 3.4
 and many more

	3.4

All values are already available in the .env file and just need to be commented or uncommented. If multiple values are uncommented, the last uncommented variable one takes precedences:

.env

host> grep MONGO_SERVER .env

#MONGO_SERVER=2.8
#MONGO_SERVER=3.0
#MONGO_SERVER=3.2
MONGO_SERVER=3.4
#MONGO_SERVER=3.5

Note

This is the official MongoDB server which might already have other tags available,
check their official website for even more versions.
https://hub.docker.com/_/mongo/

Docker host mounts

The Docker host mounts are directory paths on your host operating system that will be mounted into
the running Docker container. This makes data persistent accross restarts and let them be available
on both sides: Your host operating system as well as inside the container.

This also gives you the choice to edit data on your host operating system, such as with your
favourite IDE/editor and also inside the container, by using the bundled tools, such as
downloading libraries with composer and others.

Being able to do that on both sides, removes the need to install any development tools (except your
IDE/editor) on your host and have everything fully encapsulated into the containers itself.

HOST_PATH_HTTPD_DATADIR

This is an absolute or relative path (relative to Devilbox git directory) to your data directory.

See also

Data directory

By default, all of your websites/projects will be stored in that directory. If however you want
to separate your data from the Devilbox git directory, do change the path to a place where you
want to store all of your projects on your host computer.

	Relative path: relative to the devilbox git directory (Must start with .)

	Absolute path: Full path (Must start with /)

	Name

	Allowed values

	Default value

	HOST_PATH_HTTPD_DATADIR

	valid path

	./data/www

Example

If you want to move all your projects to /home/myuser/workspace/web/ for example, just set it
like this:

.env

 HOST_PATH_HTTPD_DATADIR=/home/myuser/workspace/web

Mapping

No matter what path you assign, inside the PHP and the web server container your data dir will
always be /shared/httpd/.

Warning

Do not create any symlinks inside your project directories that go outside the data dir.
Anything which is outside this directory is not mounted into the container.

Warning

	Remove stopped container

	Whenever you change this value you have to stop the Devilbox and also remove the stopped
container via
docker-compose rm.

HOST_PATH_MYSQL_DATADIR

This is an absolute or relative path (relative to Devilbox git directory) to your MySQL data directory.

	Relative path: relative to the devilbox git directory (Must start with .)

	Absolute path: Full path (Must start with /)

	Name

	Allowed values

	Default value

	HOST_PATH_MYSQL_DATADIR

	valid path

	./data/mysql

Each MySQL, MariaDB or PerconaDB version will have its own subdirectory, so when first running MySQL 5.5
and then starting MySQL 5.6, you will have a different database with different data.

Having each version separated from each other makes sure that you don’t accidently upgrade
from a lower to a higher version which might not be reversable. (MySQL auto-upgrade certain older
data files to newer, but this process does not necessarily work the other way round and could result in failues).

The directory structure will look something like this:

host> ls -l ./data/mysql/
drwxrwxr-x 6 48 48 4096 Jun 21 08:47 mariadb-10.0/
drwxrwxr-x 6 48 48 4096 Jun 21 08:47 mariadb-10.1/
drwxrwxr-x 6 48 48 4096 Jun 21 08:47 mariadb-10.2/
drwxrwxr-x 6 48 48 4096 Jun 21 08:47 mariadb-10.3/
drwxrwxr-x 6 48 48 4096 Jun 21 08:47 mysql-5.5/
drwxrwxr-x 6 48 48 4096 Jun 21 08:47 mysql-5.6/
drwxrwxr-x 6 48 48 4096 Jun 21 08:47 mysql-5.7/
drwxrwxr-x 6 48 48 4096 Jun 21 08:47 mysql-8.0/
drwxrwxr-x 6 48 48 4096 Jun 21 08:47 percona-5.5/
drwxrwxr-x 6 48 48 4096 Jun 21 08:47 percona-5.6/
drwxrwxr-x 6 48 48 4096 Jun 21 08:47 percona-5.7/

Warning

	Remove stopped container

	Whenever you change this value you have to stop the Devilbox and also remove the stopped
container via
docker-compose rm.

HOST_PATH_PGSQL_DATADIR

This is an absolute or relative path (relative to Devilbox git directory) to your PostgreSQL data directory.

	Relative path: relative to the devilbox git directory (Must start with .)

	Absolute path: Full path (Must start with /)

	Name

	Allowed values

	Default value

	HOST_PATH_PGSQL_DATADIR

	valid path

	./data/pgsql

Each PostgreSQL version will have its own subdirectory, so when first running PostgreSQL 9.1
and then starting PostgreSQL 10.0, you will have a different database with different data.

Having each version separated from each other makes sure that you don’t accidently upgrade
from a lower to a higher version which might not be reversable.

The directory structure will look something like this:

host> ls -l ./data/pgsql/
drwxrwxr-x 6 48 48 4096 Jun 21 08:47 9.1/
drwxrwxr-x 6 48 48 4096 Jun 21 08:47 9.2/
drwxrwxr-x 6 48 48 4096 Jun 21 08:47 9.3/
drwxrwxr-x 6 48 48 4096 Jun 21 08:47 9.4/
drwxrwxr-x 6 48 48 4096 Jun 21 08:47 9.5/
drwxrwxr-x 6 48 48 4096 Jun 21 08:47 9.6/

Warning

	Remove stopped container

	Whenever you change this value you have to stop the Devilbox and also remove the stopped
container via
docker-compose rm.

HOST_PATH_MONGO_DATADIR

This is an absolute or relative path (relative to Devilbox git directory) to your MongoDB data directory.

	Relative path: relative to the devilbox git directory (Must start with .)

	Absolute path: Full path (Must start with /)

	Name

	Allowed values

	Default value

	HOST_PATH_MONGO_DATADIR

	valid path

	./data/mongo

Each MongoDB version will have its own subdirectory, so when first running MongoDB 2.8
and then starting MongoDB 3.5, you will have a different database with different data.

Having each version separated from each other makes sure that you don’t accidently upgrade
from a lower to a higher version which might not be reversable.

The directory structure will look something like this:

host> ls -l ./data/mongo/
drwxrwxr-x 6 48 48 4096 Jun 21 08:47 2.8/
drwxrwxr-x 6 48 48 4096 Jun 21 08:47 3.0/
drwxrwxr-x 6 48 48 4096 Jun 21 08:47 3.2/
drwxrwxr-x 6 48 48 4096 Jun 21 08:47 3.4/
drwxrwxr-x 6 48 48 4096 Jun 21 08:47 3.5/

Warning

	Remove stopped container

	Whenever you change this value you have to stop the Devilbox and also remove the stopped
container via
docker-compose rm.

Docker host ports

All describned host ports below are ports that the Docker container expose on your host operating
system. By default each port will be exposed to all interfaces or IP addresses of the host
operating system. This can be controlled with LOCAL_LISTEN_ADDR.

How to list used ports on Linux and MacOS

Open a terminal and type the following:

host> netstat -an | grep 'LISTEN\s'
tcp 0 0 127.0.0.1:53585 0.0.0.0:* LISTEN
tcp 0 0 127.0.0.1:37715 0.0.0.0:* LISTEN
tcp 0 0 127.0.0.1:58555 0.0.0.0:* LISTEN
tcp 0 0 127.0.0.1:48573 0.0.0.0:* LISTEN
tcp 0 0 127.0.0.1:34591 0.0.0.0:* LISTEN
tcp 0 0 127.0.0.1:8000 0.0.0.0:* LISTEN

How to list used ports on Windows

Open the command prompt and type the following:

C:\WINDOWS\system32> netstat -an
Proto Local Address Foreign Address State
TCP 0.0.0.0:80 0.0.0.0:0 LISTENING
TCP 0.0.0.0:145 0.0.0.0:0 LISTENING
TCP 0.0.0.0:445 0.0.0.0:0 LISTENING
TCP 0.0.0.0:1875 0.0.0.0:0 LISTENING

Warning

	Docker Toolbox

	When using Docker Toobox ensure that ports are exposed to all interfaces.
See LOCAL_LISTEN_ADDR

Warning

Before setting the ports, ensure that they are not already in use on your host operating
system by other services.

HOST_PORT_HTTPD

The port to expose for the web server (Apache or Nginx). This is usually 80. Set it to something
else if 80 is already in use on your host operating system.

	Name

	Allowed values

	Default value

	HOST_PORT_HTTPD

	1 - 65535

	80

HOST_PORT_HTTPD_SSL

The port to expose for the web server (Apache or Nginx) for HTTPS (SSL) requests. This is usually
443. Set it to something else if 443 is already in use on your host operating system.

HOST_PORT_MYSQL

The port to expose for the MySQL server (MySQL, MariaDB or PerconaDB). This is usually 3306. Set it
to something else if 3306 is already in use on your host operating system.

	Name

	Allowed values

	Default value

	HOST_PORT_MYSQL

	1 - 65535

	3306

HOST_PORT_PGSQL

The port to expose for the PostgreSQL server. This is usually 5432. Set it
to something else if 5432 is already in use on your host operating system.

	Name

	Allowed values

	Default value

	HOST_PORT_PGSQL

	1 - 65535

	5432

HOST_PORT_REDIS

The port to expose for the Redis server. This is usually 6379. Set it
to something else if 6379 is already in use on your host operating system.

	Name

	Allowed values

	Default value

	HOST_PORT_REDIS

	1 - 65535

	5432

HOST_PORT_MEMCD

The port to expose for the Memcached server. This is usually 11211. Set it
to something else if 11211 is already in use on your host operating system.

	Name

	Allowed values

	Default value

	HOST_PORT_MEMCD

	1 - 65535

	11211

HOST_PORT_MONGO

The port to expose for the MongoDB server. This is usually 27017. Set it
to something else if 27017 is already in use on your host operating system.

	Name

	Allowed values

	Default value

	HOST_PORT_MONGO

	1 - 65535

	27017

HOST_PORT_BIND

The port to expose for the BIND DNS server. This is usually 53. Set it
to something else if 53 is already in use on your host operating system.

	Name

	Allowed values

	Default value

	HOST_PORT_BIND

	1 - 65535

	1053

Warning

As you might have noticed, BIND is not set to its default port 53 by default, but rather
to 1053. This is because some operating system already have a local DNS resolver running
on port 53 which would result in a failure when this BIND server is starting.

You only need to set BIND to port 53 when you want to use the Auto-DNS feautre of the
Devilbox. When doing so, read this article with care: Auto-DNS.

Container settings

PHP

Custom variables

The PHP container itself does not offer any variables, however you can add any key-value pair
variable into the .env file which will automatically be available to the started PHP container
and thus in any of your PHP projects.

If your application requires a variable to determine if it is run under development or
production, for example: APPLICATION_ENV, you can just add this to the .env file:

.env

host> grep APPLICATION_ENV .env

APPLICATION_ENV=development

Within your php application/file you can then access this variable via the getenv function:

index.php

<?php
// Example use of getenv()
echo getenv('APPLICATION_ENV');
?>

This will then output development.

Note

Add as many custom environment variables as you require.

See also

Custom environment variables

Web server

HTTPD_DOCROOT_DIR

This variable specifies the name of a directory within each of your project directories from which
the web server will serve the files.

Together with the HOST_PATH_HTTPD_DATADIR and your project directory, the HTTPD_DOCROOT_DIR
will built up the final location of a virtual hosts document root.

	Name

	Allowed values

	Default value

	HTTPD_DOCROOT_DIR

	valid dir name

	htdocs

Example 1

	devilbox git directory location: /home/user-1/repo/devilbox

	HOST_PATH_HTTPD_DATADIR: ./data/www (relative)

	Project directory: my-first-project

	HTTPD_DOCROOT_DIR: htdocs

The location from where the web server will serve files for my-first-project is then:
/home/user-1/repo/devilbox/data/www/my-first-project/htdocs

Example 2

	devilbox git directory location: /home/user-1/repo/devilbox

	HOST_PATH_HTTPD_DATADIR: /home/user-1/www (absolute)

	Project directory: my-first-project

	HTTPD_DOCROOT_DIR: htdocs

The location from where the web server will serve files for my-first-project is then:
/home/user-1/www/my-first-project/htdocs

Directory structure: default

Let’s have a look how the directory is actually built up:

 # Project directory
 host> ls -l data/www/my-first-project/
 total 4
 drwxr-xr-x 2 cytopia cytopia 4096 Mar 12 23:05 htdocs/

 # htdocs directory inside your project directory
 host> ls -l data/www/my-first-project/htdocs
 total 4
 -rw-r--r-- 1 cytopia cytopia 87 Mar 12 23:05 index.php

By calling your proect url, the index.php file will be served.

Directory structure: nested symlink

Most of the time you would clone or otherwise download a PHP framework, which in most cases has
its own www directory somewhere nested. How can this be linked to the htdocs directory?

Let’s have a look how the directory is actually built up:

 # Project directory
 host> ls -l data/www/my-first-project/
 total 4
 drwxr-xr-x 2 cytopia cytopia 4096 Mar 12 23:05 cakephp/
 lrwxrwxrwx 1 cytopia cytopia 15 Mar 17 09:36 htdocs -> cakephp/webroot/

 # htdocs directory inside your project directory
 host> ls -l data/www/my-first-project/htdocs
 total 4
 -rw-r--r-- 1 cytopia cytopia 87 Mar 12 23:05 index.php

As you can see, the web server is still able to server the files from the htdocs location,
this time however, htdocs itself is a symlink pointing to a much deeper and nested location
inside an actual framework directory.

HTTPD_TEMPLATE_DIR

This variable specifies the directory name (which is just in your project directory, next to the
HTTPD_DOCROOT_DIR directory) in which you can hold custom web server configuration files.

Every virtual host (which represents a project) can be fully customized to its own needs,
independently of other virtual hosts.

This directory does not exist by default and you need to create it. Additionally you will also
have to populate it with one of three yaml-based template files.

	Name

	Allowed values

	Default value

	HTTPD_TEMPLATE_DIR

	valid dir name

	.devilbox

Let’s have a look at an imaginary project directory called my-first-project:

Project directory
host> ls -l data/www/my-first-project/
total 4
drwxr-xr-x 2 cytopia cytopia 4096 Mar 12 23:05 htdocs/

Inside this your project directory you will need to create another directory which is called
.devilbox by default. If you change the HTTPD_TEMPLATE_DIR variable to something else,
you will have to create a directory by whatever name you chose for that variable.

 # Project directory
 host> cd data/www/my-first-project/
 host> mkdir .devilbox
 host> ls -l
 total 4
 drwxr-xr-x 2 cytopia cytopia 4096 Mar 12 23:05 .devilbox/
 drwxr-xr-x 2 cytopia cytopia 4096 Mar 12 23:05 htdocs/

Now you need to copy the vhost-gen templates into the .devilbox directory. The templates
are available in the Devilbox git directory under templates/vhost-gen/.

By copying those files into your project template directory, nothing will change, these are the
default templates that will create the virtual host exactly the same way as if they were not
present.

 # Navigate into the devilbox directory
 host> cd path/to/devilbox

 # Copy templates to your project directory
 host> cp templates/vhost-gen/* data/www/my-first-project/.devilbox/

Let’s have a look how the directory is actually built up:

 # Project directory
 host> ls -l data/www/my-first-project/
 total 4
 drwxr-xr-x 2 cytopia cytopia 4096 Mar 12 23:05 .devilbox/
 drwxr-xr-x 2 cytopia cytopia 4096 Mar 12 23:05 htdocs/

 # template directory inside your project directory
 host> ls -l data/www/my-first-project/htdocs/.devilbox
 total 4
 -rw-r--r-- 1 cytopia cytopia 87 Mar 12 23:05 apache22.yml
 -rw-r--r-- 1 cytopia cytopia 87 Mar 12 23:05 apache24.yml
 -rw-r--r-- 1 cytopia cytopia 87 Mar 12 23:05 nginx.yml

The three files apache22.yml, apache24.yml and nginx.yml let you customize your web
servers virtual host to anything from adding rewrite rules, overwriting directory index to even
changing the server name or adding locations to other assets.

See also

The whole process is based on a project called vhost-gen [https://github.com/devilbox/vhost-gen].
A virtual host generator for Apache 2.2, Apache 2.4 and any Nginx version.

See also

	Customize your virtual host

	When you want to find out more how to actually customize each virtual host to its own need,
read up more on Customized virtual host (vhost-gen).

	Tutorials

	Also have a look at this tutorial which is a walk-through showing you how to modify
a virtual host and make it serve all files for multiple sub domains (server names):
Adding Sub domains

MySQL

MYSQL_ROOT_PASSWORD

If you start a MySQL container for the first time, it will setup MySQL itself with this specified
password. If you do change the root password to something else, make sure to also set it
accordingly in .env, otherwise the devilbox will not be able to connect to MySQL and will not
be able to display information inside the bundled intranet.

	Name

	Allowed values

	Default value

	MYSQL_ROOT_PASSWORD

	any string

	empty (no password)

Warning

Keep this variable in sync with the actual MySQL root password.

MYSQL_GENERAL_LOG

This variable controls the logging behaviour of the MySQL server (MySQL, MariaDB and PerconaDB).
As the Devilbox is intended to be used for development, this feature is turned on by default.

	Name

	Allowed values

	Default value

	MYSQL_GENERAL_LOG

	0 or 1

	0

	MySQL documentation:

	“The general query log is a general record of what mysqld is doing. The server writes information to this log when clients connect or disconnect, and it logs each SQL statement received from clients. The general query log can be very useful when you suspect an error in a client and want to know exactly what the client sent to mysqld.”

– https://dev.mysql.com/doc/refman/5.7/en/query-log.html

PostgreSQL

PGSQL_ROOT_USER

If you start a PostgreSQL container for the first time, it will setup PostgreSQL itself with a
specified username and password. If you do change the root username or password to something else,
make sure to also set it accordingly in .``env,`` otherwise the devilbox will not be able to
connect to PostgreSQL and will not be able to display information inside the bundled intranet.

	Name

	Allowed values

	Default value

	PGSQL_ROOT_USER

	alphabetical string

	postgres

Warning

Keep this variable in sync with the actual PostgreSQL username.

PGSQL_ROOT_PASSWORD

If you start a PostgreSQL container for the first time, it will setup PostgreSQL itself with a
specified username and password. If you do change the root username or password to something else,
make sure to also set it accordingly in .``env,`` otherwise the devilbox will not be able to
connect to PostgreSQL and will not be able to display information inside the bundled intranet.

	Name

	Allowed values

	Default value

	PGSQL_ROOT_PASSWORD

	any string

	empty (no password)

Warning

Keep this variable in sync with the actual PostgreSQL password.

Bind

BIND_DNS_RESOLVER

This variable holds a comma separated list of IP addresses of DNS servers.
By default using Google’s DNS server as they are pretty fast.

	Name

	Allowed values

	Default value

	BIND_DNS_RESOLVER

	comma separated list of IP addresses

	8.8.8.8,8.8.4.4

The devilbox is using its own DNS server internally (your host computer can also use it for
Auto-DNS) in order to resolve custom project domains defined by TLD_SUFFIX.
To also be able to reach the internet from within the Container there must be some kind of
upstream DNS server to ask for queries.

Some examples:

BIND_DNS_RESOLVER='8.8.8.8'
BIND_DNS_RESOLVER='8.8.8.8,192.168.0.10'

Note

If you don’t trust the Google DNS server, then set it to something else.
If you already have a DNS server inside your LAN and also want your custom DNS (if any)
to be available inside the containers, set the value to its IP address.

BIND_DNSSEC_VALIDATE

This variable controls the DNSSEC validation of the DNS server. By default it is turned off.

	Name

	Allowed values

	Default value

	BIND_DNSSEC_VALIDATE

	no, auto, yes

	no

	yes - DNSSEC validation is enabled, but a trust anchor must be manually configured. No validation will actually take place.

	no - DNSSEC validation is disabled, and recursive server will behave in the “old fashioned” way of performing insecure DNS lookups, until you have manually configured at least one trusted key.

	auto - DNSSEC validation is enabled, and a default trust anchor (included as part of BIND) for the DNS root zone is used.

BIND_LOG_DNS

This variable controls if DNS queries should be shown in Docker log output or not. By default no
DNS queries are shown.

	Name

	Allowed values

	Default value

	BIND_LOG_DNS

	1 or 0

	0

If enabled all DNS queries are shown. This is useful for debugging.

BIND_TTL_TIME

This variable controls the DNS TTL in seconds. If empty or removed it will fallback to a sane default.

	Name

	Allowed values

	Default value

	BIND_TTL_TIME

	integer

	empty

See also

	BIND TTL [http://www.zytrax.com/books/dns/apa/ttl.html]

	BIND SOA [http://www.zytrax.com/books/dns/ch8/soa.html]

BIND_REFRESH_TIME

This variable controls the DNS Refresh time in seconds. If empty or removed it will fallback to a sane default.

	Name

	Allowed values

	Default value

	BIND_REFRESH_TIME

	integer

	empty

See also

BIND SOA [http://www.zytrax.com/books/dns/ch8/soa.html]

BIND_RETRY_TIME

This variable controls the DNS Retry time in seconds. If empty or removed it will fallback to a sane default.

	Name

	Allowed values

	Default value

	BIND_RETRY_TIME

	integer

	empty

See also

BIND SOA [http://www.zytrax.com/books/dns/ch8/soa.html]

BIND_EXPIRY_TIME

This variable controls the DNS Expiry time in seconds. If empty or removed it will fallback to a sane default.

	Name

	Allowed values

	Default value

	BIND_EXPIRY_TIME

	integer

	empty

See also

BIND SOA [http://www.zytrax.com/books/dns/ch8/soa.html]

BIND_MAX_CACHE_TIME

This variable controls the DNS Max Cache time in seconds. If empty or removed it will fallback to a sane default.

	Name

	Allowed values

	Default value

	BIND_MAX_CACHE_TIME

	integer

	empty

See also

BIND SOA [http://www.zytrax.com/books/dns/ch8/soa.html]

docker-compose.yml

This file is the core of the Devilbox and glues together all Docker images.

It is very tempting to just change this file in order to add new services to the already existing once.
However your git directory will become dirty and you will always have to stash your changes before pulling new features from remote. To overcome this Docker Compose offers a default override file (docker-compose.override.yml) that let’s you specify custom changes as well as completely new services without having to touch the default docker-compose.yml.

See also

To find out more read docker-compose.override.yml

docker-compose.override.yml

The docker-compose.override.yml is the configuration file where you can override existing settings from docker-compose.yml or even add completely new services.

By default, this file does not exist and you must create it. You can either copy the existing docker-compose.override.yml-example or create a new one.

Table of Contents

	Create docker-compose.override.yml

	Copy example file

	Create new file from scratch

	Further reading

See also

Official Docker documentation: Share Compose configurations between files and projects [https://docs.docker.com/compose/extends]

Create docker-compose.override.yml

Copy example file

host> cd path/to/devilbox
host> cp docker-compose.override.yml-example docker-compose.override.yml

Create new file from scratch

	Create an empty file within the Devilbox git directory named docker-compose.override.yml

	Retrieve the currently used version from the existing docker-compose.yml file

	Copy this version line to your newly created docker-compose.override.yml at the very top

Create an empty file
host> cd path/to/devilbox
host> touch docker-compose.override.yml

Retrieve the current version
host> grep ^version docker-compose.yml
version: '2.1'

Add this version line to docker-compose.override.yml
host> echo "version: '2.1'" > docker-compose.override.yml

Let’s see again how this file should look like now:

docker-compose.override.yml

version: '2.1'

Note

The documentation might be outdated and the version number might already be higher.
Rely on the output of the grep command.

Further reading

To dive deeper into this topic and see how to actually add new services or overwrite existing
services follow the below listed links:

See also

	Add your own Docker image

	Overwrite existing Docker image

apache.conf

Apache 2.2 and Apache 2.4 both come with their default vendor configuration. This might not be the
ideal setup for some people, so you have the chance to change any of those settings, by supplying
custom configurations.

See also

If you are rather using Nginx, have a look at: nginx.conf

Important

You could actually also create virtual hosts here, but it is recommended to use the
Devilbox Auto-vhost generation feature. If you want to custimize your current virtual hosts
have a look at Customized virtual host (vhost-gen).

Table of Contents

	General

	Examples

	Adjust KeepAlive settings for Apache 2.2

	Limit HTTP headers and GET size for Apache 2.4

General

You can set custom apache.conf configuration options for each Apache version separately.
See the directory structure for Apache configuration directories inside ./cfg/ directory:

host> ls -l path/to/devilbox/cfg/ | grep 'apache'

drwxr-xr-x 2 cytopia cytopia 4096 Mar 5 21:53 apache-2.2/
drwxr-xr-x 2 cytopia cytopia 4096 Mar 5 21:53 apache-2.4/

Customization is achieved by placing a file into cfg/apache-X.X/ (where X.X stands for
your Apache version). The file must end by .conf in order to be sourced by the web server.

Each of the Apache configuration directories already contain an example file:
devilbox-custom.conf-example, that can simply be renamed to devilbox-custom.conf.
This file holds some example values that can be adjusted or commented out.

In order for the changes to be applied, you will have to restart the Devilbox.

Examples

Adjust KeepAlive settings for Apache 2.2

The following examples shows you how to change the
KeepAlive [https://httpd.apache.org/docs/2.2/mod/core.html#keepalive], the
MaxKeepAliveRequests [https://httpd.apache.org/docs/2.2/mod/core.html#maxkeepaliverequests]
as well as the
KeepAliveTimeout [https://httpd.apache.org/docs/2.2/mod/core.html#keepalivetimeout] values of
Apache 2.2.

Navigate to the Devilbox directory
host> cd path/to/devilbox

Navigate to Apache 2.2 config directory
host> cd cfg/apache-2.2

Create new conf file
host> touch keep_alive.conf

Now add the following content to the file:

keep_alive.conf

KeepAlive On
KeepAliveTimeout 10
MaxKeepAliveRequests 100

In order to apply the changes you need to restart the Devilbox.

Note

The above is just an example demonstration, you probably need other values for your setup.
So make sure to understand how to configure Apache, if you are going to change any of those
settings.

Limit HTTP headers and GET size for Apache 2.4

The following examples shows you how to limit the amount of headers the client can send to the
server as well as changing the maximum URL GET size by adjusting
LimitRequestFields [http://httpd.apache.org/docs/current/mod/core.html#limitrequestfields],
LimitRequestFieldSize [http://httpd.apache.org/docs/current/mod/core.html#limitrequestfieldsize]
and
LimitRequestLine [http://httpd.apache.org/docs/current/mod/core.html#limitrequestline]
for Apache 2.4.

Navigate to the Devilbox directory
host> cd path/to/devilbox

Navigate to Apache 2.4 config directory
host> cd cfg/apache-2.4

Create new conf file
host> touch limits.conf

Now add the following content to the file:

limits.conf

Limit amount of HTTP headers a client can send to the server
LimitRequestFields 20
LimitRequestFieldSize 4094

URL GET size
LimitRequestLine 2048

In order to apply the changes you need to restart the Devilbox.

Note

The above is just an example demonstration, you probably need other values for your setup.
So make sure to understand how to configure Apache, if you are going to change any of those
settings.

nginx.conf

Nginx stable and Nginx mainline both come with their default vendor configuration. This might not
be the ideal setup for some people, so you have the chance to change any of those settings, by
supplying custom configurations.

See also

If you are rather using Apache, have a look at: apache.conf

Important

You could actually also create virtual hosts here, but it is recommended to use the
Devilbox Auto-vhost generation feature. If you want to custimize your current virtual hosts
have a look at Customized virtual host (vhost-gen).

Table of Contents

	General

	Examples

	Adjust KeepAlive settings for Nginx stable

	Adjust timeout settings for Nginx mainline

General

You can set custom nginx.conf configuration options for each Nginx version separately.
See the directory structure for Nginx configuration directories inside ./cfg/ directory:

host> ls -l path/to/devilbox/cfg/ | grep 'nginx'

drwxr-xr-x 2 cytopia cytopia 4096 Mar 5 21:53 nginx-mainline/
drwxr-xr-x 2 cytopia cytopia 4096 Mar 5 21:53 nginx-stable/

Customization is achieved by placing a file into cfg/nginx-X/ (where X stands for
your Nginx flavoour). The file must end by .conf in order to be sourced by the web server.

Each of the Nginx configuration directories already contain an example file:
devilbox-custom.conf-example, that can simply be renamed to devilbox-custom.conf.
This file holds some example values that can be adjusted or commented out.

In order for the changes to be applied, you will have to restart the Devilbox.

Examples

Adjust KeepAlive settings for Nginx stable

The following examples shows you how to change the
keepalive [http://nginx.org/en/docs/http/ngx_http_upstream_module.html#keepalive], the
keepalive_requests [https://nginx.org/en/docs/http/ngx_http_core_module.html#keepalive_requests]
as well as the
keepalive_timeout [https://nginx.org/en/docs/http/ngx_http_core_module.html#keepalive_timeout]
values of Nginx stable.

Navigate to the Devilbox directory
host> cd path/to/devilbox

Navigate to Nginx stable config directory
host> cd cfg/nginx-stable

Create new conf file
host> touch keep_alive.conf

Now add the following content to the file:

keep_alive.conf

keepalive 10;
keepalive_timeout 10s;
keepalive_requests 100;

In order to apply the changes you need to restart the Devilbox.

Note

The above is just an example demonstration, you probably need other values for your setup.
So make sure to understand how to configure Nginx, if you are going to change any of those
settings.

Adjust timeout settings for Nginx mainline

The following examples shows you how to adjust various timeout settings for Nginx mainline by
adjusting
client_body_timeout [https://nginx.org/en/docs/http/ngx_http_core_module.html#client_body_timeout],
client_header_timeout [https://nginx.org/en/docs/http/ngx_http_core_module.html#client_header_timeout]
and
send_timeout [https://nginx.org/en/docs/http/ngx_http_core_module.html#send_timeout] directives.

Navigate to the Devilbox directory
host> cd path/to/devilbox

Navigate to Nginx mainline config directory
host> cd cfg/nginx-mainline

Create new conf file
host> touch timeouts.conf

Now add the following content to the file:

timeouts.conf

client_body_timeout 60s;
client_header_timeout 60s;
send_timeout 60s;

In order to apply the changes you need to restart the Devilbox.

Note

The above is just an example demonstration, you probably need other values for your setup.
So make sure to understand how to configure Nginx, if you are going to change any of those
settings.

php.ini

php.ini changes are global to all projects, but will only affect the currently selected
PHP version.

Table of Contents

	General

	Examples

	Change memory_limit for PHP 7.1

	Change timeout values for PHP 5.6

General

You can set custom php.ini configuration options for each PHP version separately.
See the directory structure for PHP configuration directories inside ./cfg/ directory:

host> ls -l path/to/devilbox/cfg/ | grep 'php-ini'

drwxr-xr-x 2 cytopia cytopia 4096 Mar 5 21:53 php-ini-5.4/
drwxr-xr-x 2 cytopia cytopia 4096 Mar 5 21:53 php-ini-5.5/
drwxr-xr-x 2 cytopia cytopia 4096 Apr 3 22:04 php-ini-5.6/
drwxr-xr-x 2 cytopia cytopia 4096 Mar 5 21:53 php-ini-7.0/
drwxr-xr-x 2 cytopia cytopia 4096 Mar 5 21:53 php-ini-7.1/
drwxr-xr-x 2 cytopia cytopia 4096 Mar 5 21:53 php-ini-7.2/

Customization is achieved by placing a file into cfg/php-ini-X.X/ (where X.X stands for
your PHP version). The file must end by .ini in order to be sourced by the PHP-FPM server.

Each of the PHP ini configuration directories already contain an example file:
devilbox-custom.ini-example, that can simply be renamed to devilbox-custom.ini.
This file holds some example values that can be adjusted or commented out.

In order for the changes to be applied, you will have to restart the Devilbox.

Examples

Change memory_limit for PHP 7.1

The following examples shows you how to change the
memory_limit [https://secure.php.net/manual/en/ini.core.php#ini.memory-limit] of PHP 7.1 to
4096 MB.

Navigate to the Devilbox directory
host> cd path/to/devilbox

Navigate to PHP 7.1 config directory
host> cd cfg/php-ini-7.1

Create new ini file
host> touch memory_limit.ini

Now add the following content to the file:

memory_limit.ini

[PHP]
memory_limit = 4096M

In order to apply the changes you need to restart the Devilbox.
You can validate that the changes have taken place by visiting the Devilbox intranet phpinfo page.

Change timeout values for PHP 5.6

The following examples shows you how to change the
max_execution_time [https://secure.php.net/manual/en/info.configuration.php#ini.max-execution-time]
and max_input_time [https://secure.php.net/manual/en/info.configuration.php#ini.max-input-time]
of PHP 5.6.

Navigate to the Devilbox directory
host> cd path/to/devilbox

Navigate to PHP 5.6 config directory
host> cd cfg/php-ini-5.6

Create new ini file
host> touch timeouts.ini

Now add the following content to the file:

timeouts.ini

[PHP]
max_execution_time = 180
max_input_time = 180

In order to apply the changes you need to restart the Devilbox.
You can validate that the changes have taken place by visiting the Devilbox intranet phpinfo page.

php-fpm.conf

php-fpm.conf changes are global to all projects, but will only affect the currently selected
PHP version.

Table of Contents

	General

	Examples

	Change rlimit core for master process for PHP 7.1

	Change child process on pool www for PHP 5.6

	Set non-overwritable php.ini values for PHP 7.0

General

You can set custom php-fpm.conf configuration options for each PHP version separately.
These changes affect the PHP-FPM process itself, global as well as pool specific configuration can
be set.

Note

The default PHP-FPM pool is called www in case you want to make changes to it.

See the directory structure for PHP-FPM configuration directories inside ./cfg/ directory:

host> ls -l path/to/devilbox/cfg/ | grep 'php-fpm'

drwxr-xr-x 2 cytopia cytopia 4096 Mar 5 21:53 php-fpm-5.4/
drwxr-xr-x 2 cytopia cytopia 4096 Mar 5 21:53 php-fpm-5.5/
drwxr-xr-x 2 cytopia cytopia 4096 Apr 3 22:04 php-fpm-5.6/
drwxr-xr-x 2 cytopia cytopia 4096 Mar 5 21:53 php-fpm-7.0/
drwxr-xr-x 2 cytopia cytopia 4096 Mar 5 21:53 php-fpm-7.1/
drwxr-xr-x 2 cytopia cytopia 4096 Mar 5 21:53 php-fpm-7.2/

Customization is achieved by placing a file into cfg/php-fpm-X.X/ (where X.X stands for
your PHP version). The file must end by .conf in order to be sourced by the PHP-FPM server.

Each of the PHP-FPM conf configuration directories already contain an example file:
devilbox-custom.conf-example, that can simply be renamed to devilbox-custom.conf.
This file holds some example values that can be adjusted or commented out.

In order for the changes to be applied, you will have to restart the Devilbox.

See also

To find out about all available PHP-FPM directives, global or pool specific have a look
at its documentation: https://secure.php.net/manual/en/install.fpm.configuration.php

Examples

Change rlimit core for master process for PHP 7.1

The following examples shows you how to change the
rlimit_core [https://secure.php.net/manual/en/install.fpm.configuration.php#rlimit-core-master]
of PHP-FPM 7.1 master process to 100.

Navigate to the Devilbox directory
host> cd path/to/devilbox

Navigate to PHP 7.1 config directory
host> cd cfg/php-fpm-7.1

Create new conf file
host> touch rlimit.conf

Now add the following content to the file:

rlimit.conf

[global]
rlimit_core = 100

Important

Note the [global] section.

In order to apply the changes you need to restart the Devilbox.

Change child process on pool www for PHP 5.6

The following examples shows you how to change the
pm [https://secure.php.net/manual/en/install.fpm.configuration.php#pm],
pm.max_children [https://secure.php.net/manual/en/install.fpm.configuration.php#pm.max-chidlren],
pm.start_servers [https://secure.php.net/manual/en/install.fpm.configuration.php#pm.start-servers],
pm.min_spare_servers [https://secure.php.net/manual/en/install.fpm.configuration.php#pm.min-spare-servers]
and
pm.max_spare_servers [https://secure.php.net/manual/en/install.fpm.configuration.php#pm.max-spare-servers]
of PHP-FPM 5.6 on pool www.

Navigate to the Devilbox directory
host> cd path/to/devilbox

Navigate to PHP 5.6 config directory
host> cd cfg/php-fpm-5.6

Create new conf file
host> touch www_server.conf

Now add the following content to the file:

www_server.conf

[www]
; Pool config
pm = dynamic
pm.max_children = 10
pm.start_servers = 3
pm.min_spare_servers = 2
pm.max_spare_servers = 5

Important

Note the [www] section.

In order to apply the changes you need to restart the Devilbox.

Set non-overwritable php.ini values for PHP 7.0

You can also set php.ini values that cannot be overwritten by php.ini or the ini_set()
function of PHP. This might be useful to make sure a specific value is enforced and will not be
changed by some PHP frameworks on-the-fly.

This is achieved by php_admin_flag and php_admin_value that are parsed directly to PHP-FPM.

See also

https://secure.php.net/manual/en/install.fpm.configuration.php

The following example will disable built-in PHP functions globally and non-overwriteable for PHP 7.0.

Navigate to the Devilbox directory
host> cd path/to/devilbox

Navigate to PHP 7.0 config directory
host> cd cfg/php-fpm-7.0

Create new conf file
host> touch admin.conf

Now add the following content to the file:

admin.conf

[www]
php_admin_value[disable_functions] = link,symlink,popen,exec,system,shell_exec

Important

Note the [www] section.

Important

This kind of setting only has affects PHP files served through PHP-FPM, when you run php
on the command line, this setting will be ignored.

Important

Be aware that none of your projects can use the above disabled functions anymore.
They will simply not exist for PHP 7.0 after that configuration took affect.

In order to apply the changes you need to restart the Devilbox.

my.cnf

my.ini changes are global to all projects, but will only affect the currently selected
MySQL version.

Important

When using Docker Toolbox on Windows, *.cnf files must have read-only file
permissions, otherwise they are not sourced by the MySQL server.

Make sure to chmod 0444 *.cnf after adding your values.

Table of Contents

	General

	Examples

	Change key_buffer_size for MySQL 5.5

	Change timeout and packet size for PerconaDB 5.7

General

You can set custom MySQL options via your own defined my.cnf files for each version separately.
See the directory structure for MySQL configuration directories inside ./cfg/ directory:

host> ls -l path/to/devilbox/cfg/ | grep -E 'mysql|mariadb|percona'

drwxr-xr-x 2 cytopia cytopia 4096 Mar 5 21:53 mariadb-10.0/
drwxr-xr-x 2 cytopia cytopia 4096 Mar 5 21:53 mariadb-10.1/
drwxr-xr-x 2 cytopia cytopia 4096 Mar 5 21:53 mariadb-10.2/
drwxr-xr-x 2 cytopia cytopia 4096 Mar 5 21:53 mariadb-10.3/
drwxr-xr-x 2 cytopia cytopia 4096 Mar 5 21:53 mysql-5.5/
drwxr-xr-x 2 cytopia cytopia 4096 Mar 5 21:53 mysql-5.6/
drwxr-xr-x 2 cytopia cytopia 4096 Mar 5 21:53 mysql-5.7/
drwxr-xr-x 2 cytopia cytopia 4096 Mar 5 21:53 mysql-8.0/
drwxr-xr-x 2 cytopia cytopia 4096 Mar 5 21:53 percona-5.5/
drwxr-xr-x 2 cytopia cytopia 4096 Mar 5 21:53 percona-5.6/
drwxr-xr-x 2 cytopia cytopia 4096 Mar 5 21:53 percona-5.7/

Customization is achieved by placing a file into cfg/mysql-X.X/, cfg/mariadb-X.X/ or
cfg/percona-X-X (where X.X stands for your MySQL version).
The file must end by .cnf in order to be sourced by the MySQL server.

Each of the MySQL cnf configuration directories already contain an example file:
devilbox-custom.cnf-example, that can simply be renamed to devilbox-custom.cnf.
This file holds some example values that can be adjusted or commented out.

In order for the changes to be applied, you will have to restart the Devilbox.

Examples

Change key_buffer_size for MySQL 5.5

The following examples shows you how to change the
key_buffer_size [https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_key_buffer_size]
of MySQL 5.5 to 16 MB.

Navigate to the Devilbox directory
host> cd path/to/devilbox

Navigate to MySQL 5.5 config directory
host> cd cfg/mysql-5.5

Create new cnf file
host> touch key_buffer_size.cnf

Now add the following content to the file:

memory_limit.cnf

[mysqld]
key_buffer_size=16M

In order to apply the changes you need to restart the Devilbox.
You can validate that the changes have taken place by visiting the Devilbox intranet MySQL info page.

Change timeout and packet size for PerconaDB 5.7

The following examples shows you how to change the
wait_timeout [https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_wait_timeout]
and
max_allowed_packet [https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_max_allowed_packet]
of PerconaDB 5.7

Navigate to the Devilbox directory
host> cd path/to/devilbox

Navigate to PerconaDB 5.7 config directory
host> cd cfg/percona-5.7

Create new ini file
host> touch timeouts.cnf

Now add the following content to the file:

timeouts.cnf

[mysqld]
max_allowed_packet=256M
wait_timeout = 86400

In order to apply the changes you need to restart the Devilbox.
You can validate that the changes have taken place by visiting the Devilbox intranet MySQL info page.

bashrc.sh

Each PHP container is using bash as its default shell. If you do not like the way it is currently
configured, you can add your own configuration files to overwrite settings.

See also

Work inside the container

Table of Contents

	Directory mapping

	Examples

	Custom aliases

	Custom vim configuration

Directory mapping

Inside the Devilbox git directory you will find a directory called bash/.
Every file inside this directory ending by *.sh will be source by your bash shell,
allowing for a customized bash configuration. All files not ending by *.sh will be ignored
and can be used to create config files for other programs.

The bash/ directory will be mounted into the PHP container to /etc/bashrc-devilbox.d/.

	Host OS path

	Docker path

	./bash/

	/etc/bashrc-devilbox.d/

Examples

Custom aliases

Let’s say you want to add some custom shell aliases. All you have to do is create any file ending
by .sh and place it into the ./bash/ directory:

Navigate to the Devilbox git directory
host> cd path/to/devilbox

Create a new file
host> touch ./bash/aliases.sh

Add some content to the file
host> vi ./bash/aliases.sh

./bash/aliases.sh

 alias l='ls -a'
 alias ll='ls -al'
 alias www='cd /shared/httpd'

Custom vim configuration

The .vimrc is usually place directly in the users home directory and the Devilbox does not
offer any mounts directly to that directory, however you can use a trick with shell aliases
to use vim with a different config file by default.

First of all, place your favorite .vimrc into the ./bash/ directory

Navigate to the Devilbox git directory
host> cd path/to/devilbox

Copy your vim config to the ./bash directory
host> cp ~/.vimrc bash/.vimrc

Right now, this is not going to do anything and as .vimrc is not ending by .sh it is also
ignored by the shell itself. What is now left to do, is make vim itself always use this config file.

As you can see from the above stated directory mapping, the .vimrc file will end up under:
/etc/bashrc-devilbox.d/.vimrc inside the PHP container, so just create a shell alias for vim
that will always use this file:

Navigate to the Devilbox git directory
host> cd path/to/devilbox

Create a new file
host> touch ./bash/vim.sh

Add your vim alias
host> vi ./bash/vim.sh

./bash/vim.sh

alias vim='vim -u /etc/bashrc-devilbox.d/.vimrc

Whenever you start vim inside any PHP container, it will automatically use the provided vim
configuration file.

This trick will work for all tools that require configuration files.

Docker and Docker Compose

This section gives you some detail about installing Docker and Docker Compose on your
operating system.

	Install Docker

	Docker on Linux

	Docker on Windows

	Docker on MacOS

	docker user group

	Install Docker Compose

	Checklist

Install Docker

See also

	Docker Toolbox

	Note, this section refers to native Docker, which is the recommended version. If however,
you need to install Docker Toolbox (such as on Windows 7 or older Macs), have a look at this page.

Warning

The minimum required Docker version is 1.12.0. Make sure not to install older versions.

Docker on Linux

Refer to the official Docker for Linux documentation [https://docs.docker.com/engine/installation/#supported-platforms] for how to install Docker on your specific Linux distribution.

Docker on Windows

Refer to the official Docker for Windows documentation [https://docs.docker.com/docker-for-windows/install/] for how to install Docker on Windows.

Docker on MacOS

Refer to the official Docker for Mac documentation [https://docs.docker.com/docker-for-mac/install/] for how to install Docker on MacOS.

docker user group

Docker itself requires super user privileges which is granted to a system wide group
called docker. After having installed Docker on your system, ensure that your local
user is assigned to the docker group. Check this via groups or id command.

host> id

uid=1000(cytopia) gid=1000(cytopia) groups=1000(cytopia),999(docker)

Install Docker Compose

Warning

The minimum required Docker Compose version is 1.9.0. Make sure not to install older versions.

The Docker documentation provides various ways to install Docker Compose for all supported
operating systems and is quite extensive and straight forward.
Follow their steps here: Install Docker Compose [https://docs.docker.com/compose/install/#install-compose].

Checklist

	Docker is installed at the minimum required version

	Your user is part of the docker group

	Docker Compose is installed at the minimum required version

Docker Toolbox

	Installation

	Docker Toolbox on Windows

	Docker Toolbox on MacOS

	Docker Compose

	Additional steps

	Listening address

	Port forwarding

	Auto-DNS

	Checklist

Installation

Warning

The minimum required Docker Toolbox version is 1.12.0. Make sure not to install older versions.

Docker Toolbox on Windows

Refer to the official Docker Toolbox on Windows documentation [https://docs.docker.com/toolbox/toolbox_install_windows/] for how to install Docker Toolbox on Windows.

Docker Toolbox on MacOS

Refer to the official Docker Toolbox on MacOS documentation [https://docs.docker.com/toolbox/toolbox_install_mac/] for how to install Docker Toolbox on MacOS.

Docker Compose

When installing Docker Compose, make sure you do that inside the virtual machine.

See also

	Install Docker Compose

	Have a look at this page to help you install Docker Compose for your operating system.

Additional steps

Docker Toolbox is a legacy solution to bring Docker to systems which don’t natively support
Docker itself. This is achieved by starting a virtualized Linux (e.g.: on VirtualBox) and have Docker
run inside.

You don’t have to take care about setting up the virtual machine, this is done automatically with the provided
setup file (Windows and MacOS).

This however has several disadvantages as the forwarded Docker ports are only visible inside the
virtualized Linux and not on the host computer. Therefore the web server port cannot be reached on
your host machine and you are not able to view any projects.

Listening address

First thing you need to make sure is that the LOCAL_LISTEN_ADDR variable from your .env file is
empty. When it is empty all services bind to all IP addresses inside the virtual machine and thus
being able to be seen from outside (your host operating system).

You can verifiy that the variable is actually empty by checking your .env file:

host> grep ^LOCAL_LISTEN_ADDR .env

LOCAL_LISTEN_ADDR=

Port forwarding

Additionally I would suggest that you port-forward the virtual machines port 80 (which itself
points to the docker container inside) to your host computers 127.0.0.1 address. This way you
can reach the devilbox via http://127.0.0.1 or http://localhost.

If you do not port-forward it to your host machines localhost, you will have to adjust all project
DNS entries that are described in this documentation to go to 127.0.0.1 to the IP address of
your virtual machine.

Auto-DNS

I am currently not aware that Auto-DNS will work with Docker Toolbox. If you are willing to
spent some time there, let me know. There is currently an open ticket which is addressing this:
https://github.com/cytopia/devilbox/issues/101

Checklist

	Docker Toolbox is installed at minimum required version

	Docker Compose is installed inside the virtual machine at minimum required version

	LOCAL_LISTEN_ADDR is empty in the .env file

Available container

Note

	Start the Devilbox

	Find out how to start some or all container.

The following table gives you an overview about all container that can be started.
When doing a selective start, use the Name value to specify the container to start up.

	Container

	Name

	Hostname

	IP Address

	DNS

	bind

	bind

	172.16.238.100

	PHP

	php

	php

	172.16.238.10

	Apache, Nginx

	httpd

	httpd

	172.16.238.11

	MySQL, MariaDB, PerconaDB

	mysql

	mysql

	172.16.238.12

	PostgreSQL

	pgsql

	pgsql

	172.16.238.13

	Redis

	redis

	redis

	172.16.238.14

	Memcached

	memcd

	memcd

	172.16.238.15

	MongoDB

	mongo

	mongo

	172.16.238.16

Available tools

Each PHP container version brings the same tools, so you can safely switch versions without having
to worry to have less or more tools available.

See also

Work inside the container

The PHP container is your workhorse and these are your tools:

Note

If you are in need of other tools, open up an issue at
Github [https://github.com/cytopia/devilbox/issues] and ask for it,
this can usually be implemented very quickly.

See also

If you ever feel those tools are out-dated, simply update your Docker images.
Docker images are built every night to ensure latest tools and security patches:
Update Docker images

Remove stopped container

Why should I?

If you simply docker-compose stop in order to stop all containers, they are still preserved
in the docker ps -a process list and still have state.

In case you change any path variables inside the .env file (or silently due to git updates),
you need to completely re-create the state.

This is done by first fully removing the container and then simply starting it again.

How to do it?

host> docker-compose stop
host> docker-compose rm

When to do it?

Whenever path values inside the .env file change.

Syncronize container permissions

One main problem with a running Docker container is to synchronize the ownership of files in a
mounted volume in order to preserve security (Not having to use chmod 0777 or root user).

This problem will be addressed below by using a PHP-FPM docker image as an example.

Unsyncronized permissions

Consider the following directory structure of a mounted volume. Your hosts computer uid/gid are
1000 which does not have a corresponding user/group within the container. Fortunately the
tmp/ directory allows everybody to create new files in it, because its permissions are
0777.

 [Host] | [Container]
--
 $ ls -l | $ ls -l
 -rw-r--r-- user group index.php | -rw-r--r-- 1000 1000 index.php
 drwxrwxrwx user group tmp/ | drwxrwxrwx 1000 1000 tmp/

Your web application might now have created some temporary files (via the PHP-FPM process) inside
the tmp/ directory:

 [Host] | [Container]
--
 $ ls -l tmp/ | $ ls -l tmp/
 -rw-r--r-- 96 96 _tmp_cache01.php | -rw-r--r-- www www _tmp_cache01.php
 -rw-r--r-- 96 96 _tmp_cache02.php | -rw-r--r-- www www _tmp_cache01.php

On the Docker container side everything is still fine, but on your host computers side, those
files now show a user id and group id of 96, which is in fact the uid/gid of the PHP-FPM
process running inside the container. On the host side you have just lost write/delete access to
those files and will now have to use sudo in order to delete/edit those files.

It gets even worse

Consider your had created the tmp/ directory on your host only with 0775 permissions:

 [Host] | [Container]
--
 $ ls -l | $ ls -l
 -rw-r--r-- user group index.php | -rw-r--r-- 1000 1000 index.php
 drwxrwxr-x user group tmp/ | drwxrwxr-x 1000 1000 tmp/

If your web application now wants to create some temporary files (via the PHP-FPM process) inside
the tmp/ directory, it will fail due to lack of permissions.

The solution

To overcome this problem, it must be made sure that the PHP-FPM process inside the container runs
under the same uid/gid as your local user that mouns the volumes and also wants to work on those
files locally. However, you never know during Image build time what user id this would be.
Therefore it must be something that can be changed during startup of the container.

This is achieved in the Devilbox’s containers by two environment variables that can be provided
during startup in order to change the uid/gid of the PHP-FPM user prior starting up PHP-FPM process.

$ docker run -e NEW_UID=1000 -e NEW_GID=1000 -it devilbox/php-fpm:7.2-work
[INFO] Changing user 'devilbox' uid to: 1000
root $ usermod -u 1000 devilbox
[INFO] Changing group 'devilbox' gid to: 1000
root $ groupmod -g 1000 devilbox
[INFO] Starting PHP 7.2.0 (fpm-fcgi) (built: Oct 30 2017 12:05:19)

When NEW_UID and NEW_GID are provided to the startup command, the container will do a
usermod and groupmod prior starting up in order to assign new uid/gid to the PHP-FPM user.
When the PHP-FPM process finally starts up it actually runs with your local system user and making
sure permissions will be in sync from now on.

Note

To tackle this on the PHP-FPM side is only half a solution to the problem. The same applies to a web server Docker container when you offer file uploads. They will be uploaded and created by the web servers uid/gid. Therefore the web server itself must also provide the same kind of solution.

FAQ

Find common questions and answers here.

See also

Troubleshooting

Table of Contents

	General

	Are there any differences between native Docker and Docker Toolbox?

	Why are mounted MySQL data directories separated by version?

	Why are mounted PostgreSQL data directories separated by version?

	Why are mounted MongoDB data directories separated by version?

	Why do the user/group permissions of log/ or cfg/ directories show 1000?

	Can I not just comment out the service in the .env file?

	Are there any required services that must/will always be started?

	What PHP Modules are available?

	Configuration

	Can I load custom PHP modules without rebuilding the Docker image?

	Can I load custom Apache modules without rebuilding the Docker image?

	Can I change the MySQL root password?

	Can I change php.ini?

	Can I change my.cnf?

	Can I change the project virtual host domain .loc?

	Can I just start PHP and MySQL instead of all container?

	Do I always have to edit /etc/hosts for new projects?

	Compatibility

	Does it work with CakePHP?

	Does it work with Drupal?

	Does it work with Joomla?

	Does it work with Laravel?

	Does it work with Phalcon?

	Does it work with Symfony?

	Does it work with Wordpress?

	Does it work with Yii?

	Does it work with Zend?

General

Are there any differences between native Docker and Docker Toolbox?

Yes, read Docker Toolbox to find out more.

Why are mounted MySQL data directories separated by version?

This is just a pre-caution. Imagine they would link to the same datadir. You start the Devilbox
with mysql 5.5, create a database and add some data. Now you decide to switch to mysql 5.7 and
restart the devilbox. The newer mysql version will probably upgrade the data leaving it unable to
start with older mysql versions.

Why are mounted PostgreSQL data directories separated by version?

See: Why are mounted MySQL data directories separated by version?

Why are mounted MongoDB data directories separated by version?

See: Why are mounted MySQL data directories separated by version?

Why do the user/group permissions of log/ or cfg/ directories show 1000?

Uid and Gid are set to 1000 by default. You can alter them to match the uid/gid of your current
user. Open the .env file and change the sections NEW_UID and NEW_GID. When you start
up the devilbox, the PHP container will use these values for its user.

See also

NEW_UID and NEW_GID

Can I not just comment out the service in the .env file?

No, don’t do this. This will lead to unexpected behaviour (different versions will be loaded).
The .env file allows you to configure the devilbox, but not to start services selectively.

Are there any required services that must/will always be started?

Yes. http and php will automatically always be started (due to dependencies inside
docker-compose.yml) if you specify them or not.

What PHP Modules are available?

The Devilbox is a development stack, so it is made sure that a lot of PHP modules are available
out of the box in order to work with many different frameworks.

Available PHP modules can be seen at the PHP Docker image repository.

See also

https://github.com/devilbox/docker-php-fpm

Configuration

Can I load custom PHP modules without rebuilding the Docker image?

Yes, see custom_php_modules

Can I load custom Apache modules without rebuilding the Docker image?

Yes, see custom_apache_modules

Can I change the MySQL root password?

Yes, you can change the password of the MySQL root user. If you do so, you must also set the new
password in your .env file. See MYSQL_ROOT_PASSWORD for how to change this value.

Can I change php.ini?

Yes, php.ini directives can be changed for each PHP version separately. See php.ini

Can I change my.cnf?

Yes, my.cnf directives can be changed for each MySQL version separately. See my.cnf

Can I change the project virtual host domain .loc?

Yes, the .env variable TLD_SUFFIX can be changed to whatever domain or subdomain
you want. See TLD_SUFFIX.

Warning

Be aware not to use dev or localhost. See TLD_SUFFIX for more details.

Can I just start PHP and MySQL instead of all container?

Yes, every Docker container is optional. The Devilbox allows for selective startup. See
Start the Devilbox.

Do I always have to edit /etc/hosts for new projects?

You need a valid DNS entry for every project that points to the Httpd server. As those records
don’t exists by default, you will have to create them. However, the Devilbox has a bundled DNS
server that can automate this for you. The only thing you have to do for that to work is to add
this DNS server’s IP address to your /etc/resolv.conf.
See Auto-DNS for detailed instructions.

Compatibility

Does it work with CakePHP?

Yes, see Setup CakePHP

Does it work with Drupal?

Yes, see Setup Drupal

Does it work with Joomla?

Yes, see Setup Joomla

Does it work with Laravel?

Yes, see Setup Laravel

Does it work with Phalcon?

Yes, see Setup Phalcon

Does it work with Symfony?

Yes, see Setup Symfony

Does it work with Wordpress?

Yes, see Setup Wordpress

Does it work with Yii?

Yes, see Setup Yii

Does it work with Zend?

Yes, see Setup Zend

Troubleshooting

This section will contain common problems and how to resolve them.
It will grow over time once there are more issues reported.

See also

FAQ

Table of Contents

	Invalid bind mount spec

	[Warning] World-writable config file ‘/etc/mysql/docker-default.d/my.cnf’ is ignored

Invalid bind mount spec

This error might occure after changing the path of MySQL, PgSQL, Mongo or any other data directory.

When you change any paths inside .env that affect Docker mountpoints, the container need to be
removed and re-created during the next startup.
Removing the container is sufficient as they will always be created during run if they don’t exist.

In order to remove the container do the following:

host> cd path/to/devilbox
host> docker-compose stop

Remove the stopped container (IMPORTANT!)
After the removal it will be re-created during next run
host> docker-compose rm -f

See also

Remove stopped container

[Warning] World-writable config file ‘/etc/mysql/docker-default.d/my.cnf’ is ignored

This warning might occur when using Docker Toolbox on Windows and trying to apply custom
MySQL configuration files. This will also result in the configuration file not being source
by the MySQL server.

To fix this issue, you will have to change the file permission of your custom configuration files
to read-only by applying the following chmod command.

Nagivate to devilbox git directory
host> cd path/to/devilbox

Navigate to the MySQL config directory (e.g.: MySQL 5.5)
host> cd cfg/mysql-5.5

Make cnf files read only
host> chmod 0444 *.cnf

See also

	my.cnf

	https://github.com/cytopia/devilbox/issues/212

Blogs, Videos and Use-cases

Official videos

The official videos might be a bit old, but are still valid and a good start,
even if the intranet UI has changed a bit.

[image: ../_images/youtube-setup-and-workflow.png]
 [https://www.youtube.com/watch?v=reyZMyt2Zzo][image: ../_images/youtube-email-catch-all.png]
 [https://www.youtube.com/watch?v=e-U-C5WhxGY]

Blog posts

The following shows a list of blogs that give a nice and objective introduction to the Devilbox.

	Title

	Language

	Using Devilbox For Local WordPress Development In Docker [https://deliciousbrains.com/devilbox-local-wordpress-development-docker]

	English

	Devilbox: Lokaler Webserver mit Apache, PHP und MySQL im Docker Container [https://blog.moritzkanzler.de/devilbox-lokaler-webserver-mit-apache-php-und-mysql-im-docker-container/]

	German

Use-cases

Joomla’s Continuous Integration

Joomla has created a PR Testing Platform [https://docs.joomla.org/PR_Testing_Platform]
as their Google Summer of Code 2017 [https://docs.joomla.org/GSOC_2017]
project using a modified version of the Devilbox.

Add your story

Have you written a valuable blog about the Devilbox or do you have a fancy use-case?
If so, submit a pull request and add it.

Artwork

The Devilbox provides official logos and banners [https://github.com/devilbox/artwork]
to be used for articles, blogs and others by the following license:

[image: ../_images/0dfd0514cae4f9c2b94f12225f483f7cd03ac606.png]
Images are available as opaque and transparent versions:

	[image: art_logo_corner]

	[image: art_logo_round]

	[image: art_banner]

If you feel like designing a new logo for the Devilbox or just want to grab a copy of any of the
images go to its artwork repository on github.

See also

https://github.com/devilbox/artwork

Index

 _images/devilbox-email-catch-all.png
devilbox Emails

Mail

Send test Email

Enter to email

Received Emails

Date:l? From To Subject

5 14:30 devilbox@851826c075¢1 john@example.com ‘Your forum registration
206002

2 14:30 devilbox@851826c075¢1 noreply@example.com ‘Automated reply message
2otean0z

1 14:29 devilbox@851826c075¢1 all@company.org Test Email
20teas02

‘This email was intended to go to company.org

From devilboxgss1a26co75c1 Mon Apr 2 14:29:44 2018
Return-Path:
X-Original -To: allgcompany.org
Delivered-To: devilboxass1326c075c1
Received: by 851826c075c1 (Postfix, from userid 1000)
1 AEAR136027E; Mon, 2 Apr 2018 12:20:44 49000 (UTC)
To: allacompany.org
Subject: Test Enail
X-PHP-Originating-Script: 1000:mail.php
Message-Td: <20180402122944. AEAAG136027EQE51626C075¢1>
Date: Mon, 2 Apr 2018 12:29:44 +0000 (UTC)
From: devilboxgas1826co7scl

This email was intended to go to company.org

_images/devilbox-emails.png
oo < locathostmai oo +

Mail

Send test Email

Received Emails

3w [— Maing 1 examse com
P o0t Maito oot
1w apache Local dlvry Test

Fron apachedfceedtde1ds. ocotdonat Sun Oct 30 12:19:10 2016

Koriginat-To: apache

Delivered-To: maLtrape?fceedddeldd. ocolgomain

Received: by 7fceeddelds, ocolgomain (Postiix, from userid 46)
16 64C09300; Sun, 30 Oct 2016 12119:10 0100 (CET)

To: spachedtfceesierss. locatsonain

Subject: Local delivery Test

KoPH-Originating-Seript: 48imail.shp

Messoge-1d: <20T6100111910, 6400930087 ceedbhe14p. Lo domain

Date: Sun, 30 Oct 2016 12115:10 49100 (CET)

Fron: spached?fcecasterds. ocaldonatn
testing tocal users.
0w cyopisgevarytingeion Testng Emails

_images/devilbox-dash-selective.png
O devilbox Home Virtual Hosts Emails Databases v Info~ Tools v

Version v B ¥k Health
Devilbox v0.12 2017-10-10

£ Base Stack £ SQL Stack [NoSQL Stack

_images/devilbox-database.png
D devilb

Databases

N

w2

s

works

work2

work

Charse

e

ute

localbostdstabases. o

e generalci

rp——

rp—

e

e general el

ot swodsn o

0

e

19,08

e

_images/devilbox-info-php.png
Sy

Lo 35000133 4743 51 S D 414171 0110218 st 04

ougose N 14 201 1404

Conigure Commana om0 64t 015 i <o s = oo
St bl b oty L e peret " v
oS50, - <reie vl s v el oG i, e, g
CFLAGS=.ak ol 9083 i 3 02 LDFLAGS= N1 st sy =ba - CFIFLAGS= e e
s 07

Servarsot FPuFacol

Vit Ovectorysupper asarien b

Conguraton i o P sy

Lossed Contgursion e o)

[

[T TPy P w————r—
R o 1D A L (4SO ks S 200U, el Skt
e . At 5 7 157 1. o che .t e .
uthcalicppion oo 1 e, vlcsltcicn e rp et echari, o econ o
Dot in sRocailn oo -1, A ToCS N K G-t R
sl iont a7 v g . sl Ackar pat-abra . enlocalghlon ok
et o b et e e e i s e
O T
ey . o R - T, 0 S - At
hcatcppcnt e x o, ek ot o e g,

bl cont et 1ot s ki e .
Rl on a1 sy Ve o Aok TS A
hcstppicnt e s g, ol ke 4,
A A Y

R Tcn ot 1580 s xSk BN ke 0K 5354 .
st cnt e 1, v s . oLt ot ko - .
A S PR
D . LR n Bk SO, Sl k90 250,
vcaecoisont ke ariackas i eoechiion ko s sl
uhcalicpicnt ecer 1 ex <y .ol ckr g et o i

B ot 1 xS, Gl k-0 03 S Aok
o oarros .o -t I, G G S0 - e
uthcaleicppint eces pp s e, ol e o e o, ol i
[A"

ot auts
wead ey

_images/devilbox-project-hello-world.png
hello world

_images/devilbox-index.png
/D,devilbox Home virual Hosis Emails Databases ~ Info-+ Tools ~

Version v B 3 Health
Devitbox 03 o520 A

1 Base Stack SsQL Stack [INosQL Stack
@ ‘
(142
@ PHP Container Setup © PHP Container Status
You can also enter the php container and work from inside. The The PHP Dacker can connect to the Fllowing services via the
following is availableinsde the container: specified hostnames and P addresses.
Settings service Hostname /
uid 1001 hitpd
gid 1001 Hetpd connect 1721623811
VHost TLD *loc random.loc
NS Enabled mysal
Postfix Enabled MySQL connect ©@1721623812
Xdebug Yes 127.001
Xdebug Remote 192.168.0215 pasal
Xdebug Port 000 PgSQL connect 172.16.238.13
127001
Tools
redis
composer 142 .
Redis connect B 1721623814
drush 8111
127,004
drush-console not nstalled
memed
it 1831
J Memcached connect 172.16236.15
node 6102
121.004
npm 31010
bind
Bind connect
©172.16.238.100

< Networking #Ports
Docker Hostname ”® Docker Host port. Docker port.
oo e 721623810 oo = 5000
hetpd hetpd 21623811 nttpd 127001580 0
mysql mysql 172.16.238.12 mysql 127.0.0.1:3306 3306
pgsql pgsal 172.16.238.13 posql 5432
redis redis 1721623814 redis 127.001:6379 19
memcached | memcd 1721623815 memcached | 1270001211 | 11211
bind bind 172.16.238.100 bind 127.0.0.1:53/tcp 53/tcp.

53/udp

£ Data mounts % Config mounts Ll Log mounts
Docker | Host path Docker path Docker | Hostpath Docker path Docker | Host path Docker path
php Jdatafwww [shared/httpd php Jcfafphp-fpm-7.0 | fetc/php-custom.d php. J/log/php-fpm-7.0 /var/log/php
httpd [datafwww /shared/httpd httpd - N httpd ./log/nginx-stable /var/log/nginx-
mysql J/data/mysql/mariad | /var/lib/mysql mysql Jcfg/mariadb-10.1 | fetc/mysql/conf.d Elip

b10.1 po— - . mysal | flog/mariadb101 | fvarlog/mysal
posal | /data/pasalla | jarfiblpostoresalidatal e - . posal | Joafbasalos Juarflogfpostaresal
padata e 5 redis Jlog/redis3.2 var/log/redis

= |k i o 5 5 memcache | /log/memcached- | jarflog/memcache
memeac |- - d 1421 4
e bind - -
bind |- F

Render time: 1.07 sec Github Credits Debug (0)

_images/devilbox-info-mysql.png
(D\‘ devilbox Info ~

MySQL Info

For reference see here:

« https://dev.mysgl.com/doc/refman/5.5/en/server-system-variables.html
« https://dev.mysgl.com/doc/refman/5.6/en/server-system-variables.html
« https://dev.mysgl.com/doc/refman/5.7/en/server-system-variables.html

Variable Value

auto_increment_increment 1
auto_increment_offset 1
autocommit ON
automatic_sp_privileges ON
avoid_temporal_upgrade OFF
back_log 80
basedir Jusr/
big_tables OFF
bind_address 0.0.0.0
binlog_cache_size 32768
binlog_checksum CRC32
binlog_direct_non_transactional_updates OFF
binlog_error_action ABORT_SERVER
binlog_format ROW

binlog_group_commit_sync_delay]

_images/devilbox-project-no-files.png
403 Forbidden

nginx/1.12.1

_images/devilbox-vhosts-directory.png
‘ devilbox Home Virual Hosts Emails Databases v Info~ Tools ~

Virtual Hosts

Project DocumentRoot Valid URL

project-1 ./data/www/project-1/htdocs ERR error
Missing htdocs directory in: ./data/www/project-1/

_static/img/tutorials/xdebug_phpstorm_proxy.png
Q- Languages & Frameworks) PHP) Debug) DBGp Proxy & For current project Reset

» Editor IDE key: | PHPSTORM
Plugins Host: 0.0.0.0
» Version Control Port: 9000
Directories B
» Build, Execution, Deployment
v Languages & Frameworks I3
» JavaScript B
v PHP B
v Debug @
Skipped Paths @B
L |
Step Filters B
Servers (&
Composer B
Test Frameworks B
Code Sniffer B
Mess Detector (E]
Frameworks (]
Phing e

? oK Cancel Apply

_static/img/tutorials/xdebug_phpstorm_settings.png
debug) Languages & Frameworks) PHP) Debug & For current project

Keymap Pre-configuration

V7 I DR RS 1.Install Xdebug or Zend Debuager on the Web Server.

v PHP Validate debugger configuration on the Web Server.

_ 2. Install browser toolbar or bookmarklets.

3.Enable listening for PHP Debug Connections: #» Stop Listening

4. Start debug session in browser with the toolbar or bookmarklets.
For more information follow Zero-configuration Debugging tutorial.

External connections

Ignore external connections through unregistered server configurations

¥ Break at first line in PHP scripts

o

Max. simultaneous connections: 1

P
Xdebug

Debug port: 9000 W Can accept external connections

¥ Force break at first line when no path mapping specified

¥ Force break at first line when a script is outside the project

Zend Debugger

_static/img/global-configuration/https-ssl-address-bar.png
£y | @ Secure | https://cake.loc

_static/img/tutorials/xdebug_phpstorm_path_mapping.png
Q-
Keymap

» Editor
Plugins

» Version Control B
Directories ¢

» Build, Execution, Deployment

V¥ Languages & Frameworks

» JavaScript =]
v PHP ®
» Debug B
S]

Composer B

Test Frameworks (]
[]
Mess Detector (=]
Frameworks =]
Phing
Blade B

Google App Engine for PH =

+-0a

devilbox

Languages & Frameworks) PHP) Servers & For current project Reset
Name: | devilbox 0 shared
Host Port Debugger
localhost 1| 80 Xdebug v

W Use path mappings (select if the server is remote or symlinks are used)

File/Directory ‘Absolute path on the server
v I Project files

v Il /home/cytopia/repo/cytopia/devilbox
> Il devilbox
» Im github
> M idea
»> I tests
» I backups
> B bash
» Mg
v B data

keepme
> B docs
> MElog
»> B mod

oK Cancel Apply

_images/devilbox-vhosts-dns.png
‘ devilbox Home Virual Hosts Emails Databases v Info~ Tools ~

Virtual Hosts

Project DocumentRoot Valid URL

project-1 ./data/www/project-1/htdocs ERR No Host DNS record found. Add the following to

nav.xhtml

 Table of Contents

 		
 devilbox documentation

 		
 Read first

 		
 Shell commands

 		
 Checklists

 		
 Where to start?

 		
 Features

 		
 Projects

 		
 Unlimited projects

 		
 Automated virtual hosts

 		
 Automated DNS records

 		
 Email catch-all

 		
 Log files

 		
 Virtual host domains

 		
 Service and version choice

 		
 Selective start

 		
 Version choice

 		
 LAMP and MEAN stack

 		
 Configuration

 		
 Global configuration

 		
 Version specific configuration

 		
 Project specific configuration

 		
 Intranet

 		
 Command & Control Center

 		
 Third-party tools

 		
 Dockerized

 		
 Portable

 		
 Built nightly

 		
 Ships popular development tools

 		
 Work inside the container

 		
 Work inside and outside the container interchangeably

 		
 Others

 		
 Work offline

 		
 Hacking

 		
 Install the Devilbox

 		
 Supported OS

 		
 Requirements

 		
 Download the devilbox

 		
 Checkout a different release

 		
 Create .env file

 		
 Adjust .env file

 		
 Find your user id

 		
 Find your group id

 		
 Checklist

 		
 Update the Devilbox

 		
 Update git repository

 		
 Stop container

 		
 Case 1: Update master branch

 		
 Case 2: Checkout release tag

 		
 Keep .env file in sync

 		
 Recreate container

 		
 Update Docker images

 		
 Update one Docker image

 		
 Update all currently set Docker images

 		
 Update all available Docker images for all versions

 		
 Checklist git repository

 		
 Checklist Docker images

 		
 Start the Devilbox

 		
 Start all container

 		
 Start some container

 		
 Open Devilbox intranet

 		
 Checklist

 		
 Directory overview

 		
 Data directory

 		
 Project directory

 		
 Docroot directory

 		
 Domain suffix

 		
 Making sense of it

 		
 Checklist

 		
 Create your first project

 		
 Step 1: visit Intranet vhost page

 		
 Step 2: create a project directory

 		
 Step 3: create a docroot directory

 		
 Step 4: create a DNS entry

 		
 Add DNS for Linux and MacOS (native Docker)

 		
 Add DNS for Windows (native Docker)

 		
 Add DNS for Docker Toolbox

 		
 Back to intranet

 		
 Step 5: Visit your project

 		
 Step 6: Create a hello world

 		
 Checklist

 		
 Read log files

 		
 Mounted logs

 		
 Docker logs

 		
 Checklist

 		
 Email catch-all

 		
 Enter the PHP container

 		
 How to enter

 		
 Linux and MacOS

 		
 Windows

 		
 How to become root

 		
 Tools

 		
 What is available

 		
 How to update them

 		
 Advanced

 		
 Checklist

 		
 The Intranet

 		
 Devilbox tools

 		
 Overview

 		
 Virtual hosts

 		
 Emails

 		
 Databases

 		
 Info pages

 		
 Third-party tools

 		
 phpMyAdmin

 		
 Adminer

 		
 OpcacheGUI

 		
 Settings

 		
 Password protect the intranet

 		
 Disable the intranet

 		
 Checklist

 		
 Best practice

 		
 Move data out of Devilbox directory

 		
 Projects

 		
 Databases

 		
 Version control .env file

 		
 Version control service config files

 		
 PHP project hostname settings

 		
 Timezone

 		
 Backup and restore MySQL

 		
 Backup

 		
 Mysqldump-secure

 		
 mysqldump

 		
 phpMyAdmin

 		
 Adminer

 		
 Restore

 		
 mysql

 		
 phpMyAdmin

 		
 Adminer

 		
 Backup and restore PostgreSQL

 		
 Backup

 		
 pg_dump

 		
 Adminer

 		
 Restore

 		
 psql

 		
 Adminer

 		
 Backup and restore MongoDB

 		
 Backup

 		
 mongodump

 		
 Restore

 		
 mongorestore

 		
 Communicating with external hosts

 		
 Prerequisites

 		
 Host IP: Docker on Linux

 		
 Host IP: Docker for Mac

 		
 Host IP: Docker for Windows

 		
 Make DNS available to the Devilbox

 		
 Adding extra hosts

 		
 Example

 		
 Auto DNS

 		
 Further reading

 		
 Add your own Docker image

 		
 Prerequisites

 		
 What information do you need?

 		
 How to add a new service?

 		
 Generic example

 		
 CockroachDB example

 		
 How to start the new service?

 		
 Further reading

 		
 Overwrite existing Docker image

 		
 Prerequisites

 		
 What information do you need?

 		
 How to overwrite a service?

 		
 Generic steps

 		
 Overwrite Docker image for the bind service

 		
 Further reading

 		
 Adding Sub domains

 		
 Single sub domain for one project

 		
 Multiple sub domains for one project

 		
 Prerequisite

 		
 Apache 2.2

 		
 Apache 2.4

 		
 Nginx

 		
 Apply changes

 		
 Checklist

 		
 Change container versions

 		
 Change PHP version

 		
 Stop the Devilbox

 		
 Edit the .env file

 		
 Start the Devilbox

 		
 Gotchas

 		
 Change whatever version

 		
 Checklist

 		
 Work inside the container

 		
 Enter the container

 		
 Entering from Linux or MacOS: shell.sh

 		
 Entering from Windows: shell.bat

 		
 Inside the container

 		
 devilbox user

 		
 root user

 		
 Leave the container

 		
 Host to Container mappings

 		
 File and directory Permissions

 		
 Directory mappings

 		
 IP address mappings

 		
 Port mappings

 		
 DNS mappings

 		
 Checklist

 		
 Enable Xdebug

 		
 Enable Xdebug

 		
 Required for all OS

 		
 Linux

 		
 MacOS (Docker for Mac)

 		
 MacOS (Docker Toolbox)

 		
 Windows (Docker for Windows)

 		
 Windows (Docker Toolbox)

 		
 Configure your IDE

 		
 Required for all IDE

 		
 Atom

 		
 PHPStorm

 		
 Sublime Text 3

 		
 Visual Studio Code

 		
 Custom environment variables

 		
 Add custom environment variables

 		
 Use custom environment variables

 		
 Static Code Analysis

 		
 Awesome-ci

 		
 PHPCS

 		
 ESLint

 		
 Setup CakePHP

 		
 Overview

 		
 Walk through

 		
 1. Enter the PHP container

 		
 2. Create new vhost directory

 		
 3. Install CakePHP

 		
 4. Symlink webroot

 		
 5. Add MySQL Database

 		
 6. Configure database connection

 		
 7. DNS record

 		
 8. Open your browser

 		
 Setup Drupal

 		
 Overview

 		
 Walk through

 		
 1. Enter the PHP container

 		
 2. Create new vhost directory

 		
 3. Install Drupal

 		
 4. Symlink webroot

 		
 5. DNS record

 		
 6. Open your browser

 		
 Setup Joomla

 		
 Overview

 		
 Walk through

 		
 1. Enter the PHP container

 		
 2. Create new vhost directory

 		
 3. Download and extract Joomla

 		
 4. Symlink webroot

 		
 5. DNS record

 		
 6. Open your browser

 		
 Setup Laravel

 		
 Overview

 		
 Walk through

 		
 1. Enter the PHP container

 		
 2. Create new vhost directory

 		
 3. Install Laravel

 		
 4. Symlink webroot

 		
 5. DNS record

 		
 6. Open your browser

 		
 Setup Phalcon

 		
 Overview

 		
 Walk through

 		
 1. Enter the PHP container

 		
 2. Create new vhost directory

 		
 3. Install Phalcon

 		
 4. Symlink webroot

 		
 5. DNS record

 		
 6. Open your browser

 		
 Setup Symfony

 		
 Overview

 		
 Walk through

 		
 1. Enter the PHP container

 		
 2. Create new vhost directory

 		
 3. Install Symfony

 		
 4. Symlink webroot

 		
 5. Enable Symfony prod (app.php)

 		
 6. DNS record

 		
 7. Open your browser

 		
 Setup Wordpress

 		
 Overview

 		
 Walk through

 		
 1. Enter the PHP container

 		
 2. Create new vhost directory

 		
 3. Download Wordpress via git

 		
 4. Symlink webroot

 		
 5. DNS record

 		
 6. Open your browser

 		
 Setup Yii

 		
 Overview

 		
 Walk through

 		
 1. Enter the PHP container

 		
 2. Create new vhost directory

 		
 3. Install Yii2 via composer

 		
 4. Symlink webroot

 		
 5. DNS record

 		
 6. Open your browser

 		
 Setup Zend

 		
 Overview

 		
 Walk through

 		
 1. Enter the PHP container

 		
 2. Create new vhost directory

 		
 3. Install Zend via composer

 		
 4. Symlink webroot

 		
 5. DNS record

 		
 6. Open your browser

 		
 DNS records

 		
 Examples

 		
 Creating DNS records

 		
 Native Docker

 		
 Docker Toolbox

 		
 Verify

 		
 Customized virtual host (vhost-gen)

 		
 vhost-gen

 		
 What is vhost-gen

 		
 Where do I find templates

 		
 How does it work

 		
 How to apply templates to a specific project

 		
 Templates explained

 		
 Ensure yaml files are valid

 		
 Template variables

 		
 Template structure

 		
 Apply Changes

 		
 Rename project directory

 		
 Restart the Devilbox

 		
 Further readings

 		
 HTTPS (SSL)

 		
 TL;DR

 		
 How does it work

 		
 Certificate Authority

 		
 SSL Certificates

 		
 Import the CA into your browser

 		
 Chrome / Chromium

 		
 Firefox

 		
 Further Reading

 		
 Web server

 		
 Features

 		
 Auto-virtual hosts

 		
 File permission problem

 		
 Custom global configuration

 		
 Custom vhost configuration

 		
 Information

 		
 Dockerfile

 		
 Github

 		
 Dockerhub

 		
 Build process

 		
 Configuration

 		
 .env file

 		
 apache.conf / nginx.conf

 		
 vhost-gen

 		
 PHP

 		
 MySQL

 		
 MongoDB

 		
 Redis

 		
 Memcached

 		
 BIND

 		
 Devilbox Intranet

 		
 Auto-DNS

 		
 Native Docker

 		
 Prerequisites

 		
 Linux

 		
 MacOS

 		
 Windows

 		
 Docker Toolbox

 		
 MacOS

 		
 Windows

 		
 .env file

 		
 Core settings

 		
 DEBUG_COMPOSE_ENTRYPOINT

 		
 DOCKER_LOGS

 		
 DEVILBOX_PATH

 		
 LOCAL_LISTEN_ADDR

 		
 TLD_SUFFIX

 		
 EXTRA_HOSTS

 		
 NEW_UID

 		
 NEW_GID

 		
 TIMEZONE

 		
 Intranet settings

 		
 DNS_CHECK_TIMEOUT

 		
 DEVILBOX_UI_SSL_CN

 		
 DEVILBOX_UI_PROTECT

 		
 DEVILBOX_UI_PASSWORD

 		
 DEVILBOX_UI_ENABLE

 		
 Docker image versions

 		
 PHP_SERVER

 		
 HTTPD_SERVER

 		
 MYSQL_SERVER

 		
 PGSQL_SERVER

 		
 REDIS_SERVER

 		
 MEMCD_SERVER

 		
 MONGO_SERVER

 		
 Docker host mounts

 		
 HOST_PATH_HTTPD_DATADIR

 		
 HOST_PATH_MYSQL_DATADIR

 		
 HOST_PATH_PGSQL_DATADIR

 		
 HOST_PATH_MONGO_DATADIR

 		
 Docker host ports

 		
 HOST_PORT_HTTPD

 		
 HOST_PORT_HTTPD_SSL

 		
 HOST_PORT_MYSQL

 		
 HOST_PORT_PGSQL

 		
 HOST_PORT_REDIS

 		
 HOST_PORT_MEMCD

 		
 HOST_PORT_MONGO

 		
 HOST_PORT_BIND

 		
 Container settings

 		
 PHP

 		
 Web server

 		
 MySQL

 		
 PostgreSQL

 		
 Bind

 		
 docker-compose.yml

 		
 docker-compose.override.yml

 		
 Create docker-compose.override.yml

 		
 Copy example file

 		
 Create new file from scratch

 		
 Further reading

 		
 apache.conf

 		
 General

 		
 Examples

 		
 Adjust KeepAlive settings for Apache 2.2

 		
 Limit HTTP headers and GET size for Apache 2.4

 		
 nginx.conf

 		
 General

 		
 Examples

 		
 Adjust KeepAlive settings for Nginx stable

 		
 Adjust timeout settings for Nginx mainline

 		
 php.ini

 		
 General

 		
 Examples

 		
 Change memory_limit for PHP 7.1

 		
 Change timeout values for PHP 5.6

 		
 php-fpm.conf

 		
 General

 		
 Examples

 		
 Change rlimit core for master process for PHP 7.1

 		
 Change child process on pool www for PHP 5.6

 		
 Set non-overwritable php.ini values for PHP 7.0

 		
 my.cnf

 		
 General

 		
 Examples

 		
 Change key_buffer_size for MySQL 5.5

 		
 Change timeout and packet size for PerconaDB 5.7

 		
 bashrc.sh

 		
 Directory mapping

 		
 Examples

 		
 Custom aliases

 		
 Custom vim configuration

 		
 Docker and Docker Compose

 		
 Install Docker

 		
 Docker on Linux

 		
 Docker on Windows

 		
 Docker on MacOS

 		
 docker user group

 		
 Install Docker Compose

 		
 Checklist

 		
 Docker Toolbox

 		
 Installation

 		
 Docker Toolbox on Windows

 		
 Docker Toolbox on MacOS

 		
 Docker Compose

 		
 Additional steps

 		
 Listening address

 		
 Port forwarding

 		
 Auto-DNS

 		
 Checklist

 		
 Available container

 		
 Available tools

 		
 Remove stopped container

 		
 Why should I?

 		
 How to do it?

 		
 When to do it?

 		
 Syncronize container permissions

 		
 Unsyncronized permissions

 		
 It gets even worse

 		
 The solution

 		
 FAQ

 		
 General

 		
 Are there any differences between native Docker and Docker Toolbox?

 		
 Why are mounted MySQL data directories separated by version?

 		
 Why are mounted PostgreSQL data directories separated by version?

 		
 Why are mounted MongoDB data directories separated by version?

 		
 Why do the user/group permissions of log/ or cfg/ directories show 1000?

 		
 Can I not just comment out the service in the .env file?

 		
 Are there any required services that must/will always be started?

 		
 What PHP Modules are available?

 		
 Configuration

 		
 Can I load custom PHP modules without rebuilding the Docker image?

 		
 Can I load custom Apache modules without rebuilding the Docker image?

 		
 Can I change the MySQL root password?

 		
 Can I change php.ini?

 		
 Can I change my.cnf?

 		
 Can I change the project virtual host domain .loc?

 		
 Can I just start PHP and MySQL instead of all container?

 		
 Do I always have to edit /etc/hosts for new projects?

 		
 Compatibility

 		
 Does it work with CakePHP?

 		
 Does it work with Drupal?

 		
 Does it work with Joomla?

 		
 Does it work with Laravel?

 		
 Does it work with Phalcon?

 		
 Does it work with Symfony?

 		
 Does it work with Wordpress?

 		
 Does it work with Yii?

 		
 Does it work with Zend?

 		
 Troubleshooting

 		
 Invalid bind mount spec

 		
 [Warning] World-writable config file â��/etc/mysql/docker-default.d/my.cnfâ�� is ignored

 		
 Blogs, Videos and Use-cases

 		
 Official videos

 		
 Blog posts

 		
 Use-cases

 		
 Joomlaâ��s Continuous Integration

 		
 Add your story

 		
 Artwork

_images/devilbox-vhosts.png
< locatosthosts oho [

p devilbox Viwal Hosts

Virtual Hosts

Project [—— vaid UL

custoar ~Stestiustardocs | ==
custinotel e —— |

prep— ~Stesticustostaurantdocs custestauranioc

payground ~ISitestiplaygroundidocs ployoroundioc

prvteinranet ~Sitestlpiatonanettdocs prtate.ntanetioc

prvstoshoncsze ~Sitestprate shancasefdocs Mising hidocs ectoy i IStstiprivate showsal
fr— ~Stestpratotestonidocs Masing oy i foehoss:
127.0.0.1 private.testhox loc
okt Stk Imdocs workioc
o2 ~Stestwork2mdocs B -
ok Stk amdocs erorin ociosts

Founs
127.0.0.2 work.3.loc
Bt shouid be:

_images/https-ssl-01-chrome-settings.png
Default browser

Chromium is your default browser

On startup

@ Open the New Tab page

O Continue where you left off

O Open a specific page or set of pages

Advanced

_images/devilbox-vhosts-empty.png
devilbox

Virtual Hosts

No projects here.

Simply create a directory in ./data/www on your host computer (or in /shared/httpd inside the php container).

Example:
./data/www/my_project

It will then be available via http://my_project.loc

_images/devilbox-vhosts-finished.png
(D\‘ devilbox Home Vitual Hosts Emails Databases ~

Virtual Hosts

Project DocumentRoot Valid URL

project-1 ./data/www/project-1/htdocs oK project-1.loc

Render time: 0.01 se

_images/https-ssl-02-firefox-security-settings.png
N T —

asce ©Firefon sboutreferencestirivacy
Find inpreferences
% General
© Location Settings
Q search
- Camera Settings...
:2::;{; 4 Microphone Settings...
Notfications Learn more. Settings...
2 Firefox Account ¥ o
 Block pop-up windows Exceptions.
 wsrn you when websites ty o instal ad-ons Exceptions.

 Prevent acces:

lity services from accessing your browser Learn more

Firefox Data Collection and Use

We strive to provide you with choices and collect only what we need to
provide and improve Firefox For everyone. We always ask permission
before receiving personalinformation.
Privacy Notice

‘Allow Figefox to send technical and interaction data to Mozilla
Learn more

Allow Firefox to install and run studies View Firefox Studies.
Allow FireFox to send grash reports to Mozilla Learn more

Security

Deceptive Content and Dangerous Software Protection
+ Block dangerous and deceptive content Learn more.
+ Block dangerous downloads

 Warn you about unwanted and ungommon software

Certificates
When a server requests your personal certificate
Select one automatically

® Askyou every time

‘Query OCSP responder servers to confirmthe View Certificates.

@ Firefox support current validity of certificates. Security Devices.

_images/https-ssl-03-chrome-authorities.png
& Manage certificates

YOUR CERTIFICATES SERVERS AUTHORITIES OTHERS

YYou have certificates on file that identify these certificate authorities IMPORT

_images/https-ssl-01-firefox-settings.png
BEEE ©Firefox_aboutpreferences
Find in Preferences
4 General General
Q search Startup
y GE Always check if Firefox s your default browser

Security

© Firefox s not your default browser Make Default...
& Firefox Account

‘when Firefox starts
® Showyour home page
Show a blank page

Show your windows and tabs from last time.

_images/https-ssl-02-chrome-advanced-settings.png
Privacy and security

Chromium may use web services to improve your browsing experience. You may optionally disable these
services. Learn more

Use a web service to help resolve navigation errors »
Use a prediction service to help complete searches and URLS typed in the address bar

Use a prediction service to load pages more quickly »

Automatically send some system information and page content to Google to help detect dangerous
apps and sites

Protect you and your device from dangerous sites
Send a "Do Not Track" request with your browsing traffic

Manage certificates
Manage HTTPS/SSL certificates and settings

Content settings
Control what information websites can use and what content they can show you

Clear browsing data
Clear history, cookies, cache, and more

_images/https-ssl-03-firefox-authorities.png
Certificate Manager

Your Certificates ~ People Servers Authorities Others

You have certificates on file that identify these certificate authorities

Certificate Name Security Device
~AC Camerfirma S.A.
Chambers of Commerce Root - 2008 Builtin Object Token
Global Chambersign Root - 2008 Builtin Object Token

~AC Camerfirma SA CIF A82743287

Camerfirma Chambers of Commerce Root Builtin Object Token

Camerfirma Global Chambersign Root Builtin Object Token
~ACCcV

ACCVRAIZ1 Builtin Object Token

~ Actalis S.p.A./03358520967
Actalis Authentication Root CA Builtin Object Token

View... Edit Trust... Import... Export... Delete or Distrust...

a

_images/https-ssl-04-import.png
Places
P search

& aytopia

@ Desktop
@File System
Documents
[Pictures

@ Downloads
Crepo

@& < Eotopia

3 Recently U...

repo | cytopia

Location: devilbox-ca.crt

Name

d

ill

devilbox2 |ca

v Size Modi
13kB 2

Base64-encoded ASCII, single certificate v

Cancel | Open

_images/https-ssl-05-chrome-set-trust.png
Certificate authority

The certificate "Devilbox Root CA" represents a Certification Authority

Trust settings
Trust this certificate for identifying websites
Trust this certificate for identifying email users

Trust this certificate for identifying software makers

CANCEL “

_images/linux.png

_images/logo_512_trans.png

_images/https-ssl-05-firefox-set-trust.png
‘You have been asked totrust a new Certificate Authority (CA).

Doyou want to trust “Devilbox Root CA” for the following purposes?
9 Trust this CA toidentify websites.
& Trust this CA toidentify email users.

Before trusting this CA for any purpose, you should examine its certificate and its policy and
procedures (if available).

View Examine CA certificate

Cancel oK

_images/https-ssl-address-bar.png
£y | @ Secure | https://cake.loc

_images/windows.png

_images/xdebug_phpstorm_path_mapping.png
Q-
Keymap

» Editor
Plugins

» Version Control B
Directories ¢

» Build, Execution, Deployment

V¥ Languages & Frameworks

» JavaScript =]
v PHP ®
» Debug B
S]

Composer B

Test Frameworks (]
[]
Mess Detector (=]
Frameworks =]
Phing
Blade B

Google App Engine for PH =

+-0a

devilbox

Languages & Frameworks) PHP) Servers & For current project Reset
Name: | devilbox 0 shared
Host Port Debugger
localhost 1| 80 Xdebug v

W Use path mappings (select if the server is remote or symlinks are used)

File/Directory ‘Absolute path on the server
v I Project files

v Il /home/cytopia/repo/cytopia/devilbox
> Il devilbox
» Im github
> M idea
»> I tests
» I backups
> B bash
» Mg
v B data

keepme
> B docs
> MElog
»> B mod

oK Cancel Apply

_images/logo_512_trans1.png

_images/osx.png

_images/xdebug_phpstorm_settings.png
debug) Languages & Frameworks) PHP) Debug & For current project

Keymap Pre-configuration

V7 I DR RS 1.Install Xdebug or Zend Debuager on the Web Server.

v PHP Validate debugger configuration on the Web Server.

_ 2. Install browser toolbar or bookmarklets.

3.Enable listening for PHP Debug Connections: #» Stop Listening

4. Start debug session in browser with the toolbar or bookmarklets.
For more information follow Zero-configuration Debugging tutorial.

External connections

Ignore external connections through unregistered server configurations

¥ Break at first line in PHP scripts

o

Max. simultaneous connections: 1

P
Xdebug

Debug port: 9000 W Can accept external connections

¥ Force break at first line when no path mapping specified

¥ Force break at first line when a script is outside the project

Zend Debugger

_images/youtube-email-catch-all.png

_images/xdebug_phpstorm_proxy.png
Q- Languages & Frameworks) PHP) Debug) DBGp Proxy & For current project Reset

» Editor IDE key: | PHPSTORM
Plugins Host: 0.0.0.0
» Version Control Port: 9000
Directories B
» Build, Execution, Deployment
v Languages & Frameworks I3
» JavaScript B
v PHP B
v Debug @
Skipped Paths @B
L |
Step Filters B
Servers (&
Composer B
Test Frameworks B
Code Sniffer B
Mess Detector (E]
Frameworks (]
Phing e

? oK Cancel Apply

_static/comment-bright.png

_images/youtube-setup-and-workflow.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/comment-close.png

_static/comment.png

_static/file.png

_static/logo.png

_static/down.png

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

_images/banner.png

_images/banner_512_trans.png

_images/auto-dns-windows-dns-02.jpg
B Ethernetd Properties
Networng
Connect usng:

& IntelR) 82574L Gigabit Network Conection

This cannection uses the folowing tems:

Gt o Mirosat Networks
3 Fie s Prter g for icrost Nt

= T
2. Mirosoft LLDP.
. et Protocol Verson 6 (TCP/IPv6)

it Uinstal | Fropertes I
Descrpton

Transission Cortrol Potocol/itemet Protocal. The default
wide area netiork prtocol that provides comminication
across dverse inerconnected networks.

_images/auto-dns-windows-dns-03.jpg
Intenet Prof 4 (TCP/IPvé) Properties

General _ Alternate Configuration

this capabiity. Otherwise, you need to ask your network adninstrator
for the appropriate P settngs

© B ades autmacal
O Use the folowing I adress:

1P addvess:

Supret mask

Default gateway:

O Obtain DINS server address automaticaly
(® Use the following DS server adcresses:
refenedOn snver |
r——— [o

[valdate settings upon exit

Adyanced.

_images/devilbox-dash-full.png
O devilbox Home Virtual Hosts Emails Databases v Info~ Tools +

Version v B % Health
Devilbox v0.12 (2017-10-10

£ Base Stack £ SQL Stack [NoSQL Stack

Bind

PHP MariaDB PostgreSQL Redis Memcached MongoDB

(9.10.3)

(7.2.0RC1) (10.3.1) (10.0) (1.52) (3.5.12)

_static/img/auto-dns-windows-dns-03.jpg
Intenet Prof 4 (TCP/IPvé) Properties

General _ Alternate Configuration

this capabiity. Otherwise, you need to ask your network adninstrator
for the appropriate P settngs

© B ades autmacal
O Use the folowing I adress:

1P addvess:

Supret mask

Default gateway:

O Obtain DINS server address automaticaly
(® Use the following DS server adcresses:
refenedOn snver |
r——— [o

[valdate settings upon exit

Adyanced.

_static/img/devilbox-dash-full.png
O devilbox Home Virtual Hosts Emails Databases v Info~ Tools +

Version v B % Health
Devilbox v0.12 (2017-10-10

£ Base Stack £ SQL Stack [NoSQL Stack

Bind

PHP MariaDB PostgreSQL Redis Memcached MongoDB

(9.10.3)

(7.2.0RC1) (10.3.1) (10.0) (1.52) (3.5.12)

_static/img/auto-dns-windows-dns-01.jpg
T Netwe

4 [> Control Panel > Network and ntemet > Network Connections > <[] [Search Network Connections

Organize View status of- B~

Bluetooth Network Connection &g Ethernetd
N

X © Bucootnd @ pisable) 82574L Gigabit Network C

Status
Diagnose

Bridge Connections
Create Shortcut
Delete.

Rename

Properties

2Zitems 1 item selected

_static/img/auto-dns-windows-dns-02.jpg
B Ethernetd Properties
Networng
Connect usng:

& IntelR) 82574L Gigabit Network Conection

This cannection uses the folowing tems:

Gt o Mirosat Networks
3 Fie s Prter g for icrost Nt

= T
2. Mirosoft LLDP.
. et Protocol Verson 6 (TCP/IPv6)

it Uinstal | Fropertes I
Descrpton

Transission Cortrol Potocol/itemet Protocal. The default
wide area netiork prtocol that provides comminication
across dverse inerconnected networks.

_images/auto-dns-macos-dns.png
T Wi

wi-ri Tcenp [JEIEN WINS 8021X Proxies Hardware

DNS Servers: Search Domains:
192.168.1.25 coyotemoon.biz
884.4

_static/img/devilbox-email-catch-all.png
devilbox Emails

Mail

Send test Email

Enter to email

Received Emails

Date:l? From To Subject

5 14:30 devilbox@851826c075¢1 john@example.com ‘Your forum registration
206002

2 14:30 devilbox@851826c075¢1 noreply@example.com ‘Automated reply message
2otean0z

1 14:29 devilbox@851826c075¢1 all@company.org Test Email
20teas02

‘This email was intended to go to company.org

From devilboxgss1a26co75c1 Mon Apr 2 14:29:44 2018
Return-Path:
X-Original -To: allgcompany.org
Delivered-To: devilboxass1326c075c1
Received: by 851826c075c1 (Postfix, from userid 1000)
1 AEAR136027E; Mon, 2 Apr 2018 12:20:44 49000 (UTC)
To: allacompany.org
Subject: Test Enail
X-PHP-Originating-Script: 1000:mail.php
Message-Td: <20180402122944. AEAAG136027EQE51626C075¢1>
Date: Mon, 2 Apr 2018 12:29:44 +0000 (UTC)
From: devilboxgas1826co7scl

This email was intended to go to company.org

_images/auto-dns-windows-dns-01.jpg
T Netwe

4 [> Control Panel > Network and ntemet > Network Connections > <[] [Search Network Connections

Organize View status of- B~

Bluetooth Network Connection &g Ethernetd
N

X © Bucootnd @ pisable) 82574L Gigabit Network C

Status
Diagnose

Bridge Connections
Create Shortcut
Delete.

Rename

Properties

2Zitems 1 item selected

_static/img/devilbox-emails.png
oo < locathostmai oo +

Mail

Send test Email

Received Emails

3w [— Maing 1 examse com
P o0t Maito oot
1w apache Local dlvry Test

Fron apachedfceedtde1ds. ocotdonat Sun Oct 30 12:19:10 2016

Koriginat-To: apache

Delivered-To: maLtrape?fceedddeldd. ocolgomain

Received: by 7fceeddelds, ocolgomain (Postiix, from userid 46)
16 64C09300; Sun, 30 Oct 2016 12119:10 0100 (CET)

To: spachedtfceesierss. locatsonain

Subject: Local delivery Test

KoPH-Originating-Seript: 48imail.shp

Messoge-1d: <20T6100111910, 6400930087 ceedbhe14p. Lo domain

Date: Sun, 30 Oct 2016 12115:10 49100 (CET)

Fron: spached?fcecasterds. ocaldonatn
testing tocal users.
0w cyopisgevarytingeion Testng Emails

_static/img/devilbox-dash-selective.png
O devilbox Home Virtual Hosts Emails Databases v Info~ Tools v

Version v B ¥k Health
Devilbox v0.12 2017-10-10

£ Base Stack £ SQL Stack [NoSQL Stack

_images/0dfd0514cae4f9c2b94f12225f483f7cd03ac606.png

_static/img/devilbox-database.png
D devilb

Databases

N

w2

s

works

work2

work

Charse

e

ute

localbostdstabases. o

e generalci

rp——

rp—

e

e general el

ot swodsn o

0

e

19,08

e

_static/img/devilbox-index.png
/D,devilbox Home virual Hosis Emails Databases ~ Info-+ Tools ~

Version v B 3 Health
Devitbox 03 o520 A

1 Base Stack SsQL Stack [INosQL Stack
@ ‘
(142
@ PHP Container Setup © PHP Container Status
You can also enter the php container and work from inside. The The PHP Dacker can connect to the Fllowing services via the
following is availableinsde the container: specified hostnames and P addresses.
Settings service Hostname /
uid 1001 hitpd
gid 1001 Hetpd connect 1721623811
VHost TLD *loc random.loc
NS Enabled mysal
Postfix Enabled MySQL connect ©@1721623812
Xdebug Yes 127.001
Xdebug Remote 192.168.0215 pasal
Xdebug Port 000 PgSQL connect 172.16.238.13
127001
Tools
redis
composer 142 .
Redis connect B 1721623814
drush 8111
127,004
drush-console not nstalled
memed
it 1831
J Memcached connect 172.16236.15
node 6102
121.004
npm 31010
bind
Bind connect
©172.16.238.100

< Networking #Ports
Docker Hostname ”® Docker Host port. Docker port.
oo e 721623810 oo = 5000
hetpd hetpd 21623811 nttpd 127001580 0
mysql mysql 172.16.238.12 mysql 127.0.0.1:3306 3306
pgsql pgsal 172.16.238.13 posql 5432
redis redis 1721623814 redis 127.001:6379 19
memcached | memcd 1721623815 memcached | 1270001211 | 11211
bind bind 172.16.238.100 bind 127.0.0.1:53/tcp 53/tcp.

53/udp

£ Data mounts % Config mounts Ll Log mounts
Docker | Host path Docker path Docker | Hostpath Docker path Docker | Host path Docker path
php Jdatafwww [shared/httpd php Jcfafphp-fpm-7.0 | fetc/php-custom.d php. J/log/php-fpm-7.0 /var/log/php
httpd [datafwww /shared/httpd httpd - N httpd ./log/nginx-stable /var/log/nginx-
mysql J/data/mysql/mariad | /var/lib/mysql mysql Jcfg/mariadb-10.1 | fetc/mysql/conf.d Elip

b10.1 po— - . mysal | flog/mariadb101 | fvarlog/mysal
posal | /data/pasalla | jarfiblpostoresalidatal e - . posal | Joafbasalos Juarflogfpostaresal
padata e 5 redis Jlog/redis3.2 var/log/redis

= |k i o 5 5 memcache | /log/memcached- | jarflog/memcache
memeac |- - d 1421 4
e bind - -
bind |- F

Render time: 1.07 sec Github Credits Debug (0)

_static/img/auto-dns-macos-dns.png
T Wi

wi-ri Tcenp [JEIEN WINS 8021X Proxies Hardware

DNS Servers: Search Domains:
192.168.1.25 coyotemoon.biz
884.4

_static/img/devilbox-vhosts-directory.png
‘ devilbox Home Virual Hosts Emails Databases v Info~ Tools ~

Virtual Hosts

Project DocumentRoot Valid URL

project-1 ./data/www/project-1/htdocs ERR error
Missing htdocs directory in: ./data/www/project-1/

_static/img/devilbox-vhosts-dns.png
‘ devilbox Home Virual Hosts Emails Databases v Info~ Tools ~

Virtual Hosts

Project DocumentRoot Valid URL

project-1 ./data/www/project-1/htdocs ERR No Host DNS record found. Add the following to

_static/img/devilbox-project-hello-world.png
hello world

_static/img/devilbox-project-no-files.png
403 Forbidden

nginx/1.12.1

_static/img/devilbox-vhosts.png
< locatosthosts oho [

p devilbox Viwal Hosts

Virtual Hosts

Project [—— vaid UL

custoar ~Stestiustardocs | ==
custinotel e —— |

prep— ~Stesticustostaurantdocs custestauranioc

payground ~ISitestiplaygroundidocs ployoroundioc

prvteinranet ~Sitestlpiatonanettdocs prtate.ntanetioc

prvstoshoncsze ~Sitestprate shancasefdocs Mising hidocs ectoy i IStstiprivate showsal
fr— ~Stestpratotestonidocs Masing oy i foehoss:
127.0.0.1 private.testhox loc
okt Stk Imdocs workioc
o2 ~Stestwork2mdocs B -
ok Stk amdocs erorin ociosts

Founs
127.0.0.2 work.3.loc
Bt shouid be:

_static/img/youtube-email-catch-all.png

_static/img/devilbox-vhosts-empty.png
devilbox

Virtual Hosts

No projects here.

Simply create a directory in ./data/www on your host computer (or in /shared/httpd inside the php container).

Example:
./data/www/my_project

It will then be available via http://my_project.loc

_static/img/devilbox-vhosts-finished.png
(D\‘ devilbox Home Vitual Hosts Emails Databases ~

Virtual Hosts

Project DocumentRoot Valid URL

project-1 ./data/www/project-1/htdocs oK project-1.loc

Render time: 0.01 se

_static/img/devilbox-info-mysql.png
(D\‘ devilbox Info ~

MySQL Info

For reference see here:

« https://dev.mysgl.com/doc/refman/5.5/en/server-system-variables.html
« https://dev.mysgl.com/doc/refman/5.6/en/server-system-variables.html
« https://dev.mysgl.com/doc/refman/5.7/en/server-system-variables.html

Variable Value

auto_increment_increment 1
auto_increment_offset 1
autocommit ON
automatic_sp_privileges ON
avoid_temporal_upgrade OFF
back_log 80
basedir Jusr/
big_tables OFF
bind_address 0.0.0.0
binlog_cache_size 32768
binlog_checksum CRC32
binlog_direct_non_transactional_updates OFF
binlog_error_action ABORT_SERVER
binlog_format ROW

binlog_group_commit_sync_delay]

_static/img/devilbox-info-php.png
Sy

Lo 35000133 4743 51 S D 414171 0110218 st 04

ougose N 14 201 1404

Conigure Commana om0 64t 015 i <o s = oo
St bl b oty L e peret " v
oS50, - <reie vl s v el oG i, e, g
CFLAGS=.ak ol 9083 i 3 02 LDFLAGS= N1 st sy =ba - CFIFLAGS= e e
s 07

Servarsot FPuFacol

Vit Ovectorysupper asarien b

Conguraton i o P sy

Lossed Contgursion e o)

[

[T TPy P w————r—
R o 1D A L (4SO ks S 200U, el Skt
e . At 5 7 157 1. o che .t e .
uthcalicppion oo 1 e, vlcsltcicn e rp et echari, o econ o
Dot in sRocailn oo -1, A ToCS N K G-t R
sl iont a7 v g . sl Ackar pat-abra . enlocalghlon ok
et o b et e e e i s e
O T
ey . o R - T, 0 S - At
hcatcppcnt e x o, ek ot o e g,

bl cont et 1ot s ki e .
Rl on a1 sy Ve o Aok TS A
hcstppicnt e s g, ol ke 4,
A A Y

R Tcn ot 1580 s xSk BN ke 0K 5354 .
st cnt e 1, v s . oLt ot ko - .
A S PR
D . LR n Bk SO, Sl k90 250,
vcaecoisont ke ariackas i eoechiion ko s sl
uhcalicpicnt ecer 1 ex <y .ol ckr g et o i

B ot 1 xS, Gl k-0 03 S Aok
o oarros .o -t I, G G S0 - e
uthcaleicppint eces pp s e, ol e o e o, ol i
[A"

ot auts
wead ey

_static/img/global-configuration/https-ssl-03-chrome-authorities.png
& Manage certificates

YOUR CERTIFICATES SERVERS AUTHORITIES OTHERS

YYou have certificates on file that identify these certificate authorities IMPORT

_static/img/global-configuration/https-ssl-03-firefox-authorities.png
Certificate Manager

Your Certificates ~ People Servers Authorities Others

You have certificates on file that identify these certificate authorities

Certificate Name Security Device
~AC Camerfirma S.A.
Chambers of Commerce Root - 2008 Builtin Object Token
Global Chambersign Root - 2008 Builtin Object Token

~AC Camerfirma SA CIF A82743287

Camerfirma Chambers of Commerce Root Builtin Object Token

Camerfirma Global Chambersign Root Builtin Object Token
~ACCcV

ACCVRAIZ1 Builtin Object Token

~ Actalis S.p.A./03358520967
Actalis Authentication Root CA Builtin Object Token

View... Edit Trust... Import... Export... Delete or Distrust...

a

_static/img/global-configuration/https-ssl-02-chrome-advanced-settings.png
Privacy and security

Chromium may use web services to improve your browsing experience. You may optionally disable these
services. Learn more

Use a web service to help resolve navigation errors »
Use a prediction service to help complete searches and URLS typed in the address bar

Use a prediction service to load pages more quickly »

Automatically send some system information and page content to Google to help detect dangerous
apps and sites

Protect you and your device from dangerous sites
Send a "Do Not Track" request with your browsing traffic

Manage certificates
Manage HTTPS/SSL certificates and settings

Content settings
Control what information websites can use and what content they can show you

Clear browsing data
Clear history, cookies, cache, and more

_static/img/global-configuration/https-ssl-02-firefox-security-settings.png
N T —

asce ©Firefon sboutreferencestirivacy
Find inpreferences
% General
© Location Settings
Q search
- Camera Settings...
:2::;{; 4 Microphone Settings...
Notfications Learn more. Settings...
2 Firefox Account ¥ o
 Block pop-up windows Exceptions.
 wsrn you when websites ty o instal ad-ons Exceptions.

 Prevent acces:

lity services from accessing your browser Learn more

Firefox Data Collection and Use

We strive to provide you with choices and collect only what we need to
provide and improve Firefox For everyone. We always ask permission
before receiving personalinformation.
Privacy Notice

‘Allow Figefox to send technical and interaction data to Mozilla
Learn more

Allow Firefox to install and run studies View Firefox Studies.
Allow FireFox to send grash reports to Mozilla Learn more

Security

Deceptive Content and Dangerous Software Protection
+ Block dangerous and deceptive content Learn more.
+ Block dangerous downloads

 Warn you about unwanted and ungommon software

Certificates
When a server requests your personal certificate
Select one automatically

® Askyou every time

‘Query OCSP responder servers to confirmthe View Certificates.

@ Firefox support current validity of certificates. Security Devices.

_static/img/global-configuration/https-ssl-05-firefox-set-trust.png
‘You have been asked totrust a new Certificate Authority (CA).

Doyou want to trust “Devilbox Root CA” for the following purposes?
9 Trust this CA toidentify websites.
& Trust this CA toidentify email users.

Before trusting this CA for any purpose, you should examine its certificate and its policy and
procedures (if available).

View Examine CA certificate

Cancel oK

_static/img/global-configuration/https-ssl-04-import.png
Places
P search

& aytopia

@ Desktop
@File System
Documents
[Pictures

@ Downloads
Crepo

@& < Eotopia

3 Recently U...

repo | cytopia

Location: devilbox-ca.crt

Name

d

ill

devilbox2 |ca

v Size Modi
13kB 2

Base64-encoded ASCII, single certificate v

Cancel | Open

_static/img/global-configuration/https-ssl-05-chrome-set-trust.png
Certificate authority

The certificate "Devilbox Root CA" represents a Certification Authority

Trust settings
Trust this certificate for identifying websites
Trust this certificate for identifying email users

Trust this certificate for identifying software makers

CANCEL “

_static/img/global-configuration/https-ssl-01-chrome-settings.png
Default browser

Chromium is your default browser

On startup

@ Open the New Tab page

O Continue where you left off

O Open a specific page or set of pages

Advanced

_static/img/global-configuration/https-ssl-01-firefox-settings.png
BEEE ©Firefox_aboutpreferences
Find in Preferences
4 General General
Q search Startup
y GE Always check if Firefox s your default browser

Security

© Firefox s not your default browser Make Default...
& Firefox Account

‘when Firefox starts
® Showyour home page
Show a blank page

Show your windows and tabs from last time.

_static/img/youtube-setup-and-workflow.png

